Tensorflow-GPU工具包了解和详细安装方法

2024-06-17 12:36

本文主要是介绍Tensorflow-GPU工具包了解和详细安装方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

基础知识信息了解

显卡算力

CUDA兼容

Tensorflow gpu安装

CUDA/cuDNN匹配和下载

查看Conda driver的版本

下载CUDA工具包

查看对应cuDNN版本

下载cuDNN加速库

CUDA/cuDNN安装

CUDA安装方法

cuDNN加速库安装

配置CUDA/cuDNN环境变量

配置环境变量

核验是否安装成功

Tensorflow-gpu安装

命令安装

报错处理

核验安装结果


直通车:人工智能发展历程和工具搭建学习-CSDN博客

        通过之前的文章学习,我们已经安装好了Anaconda和Tensorflow2.4,但是在后期的学习中,会涉及到神经网络的学习等数据量较大的操作,普通的tensorflow-cpu版本处理速度较慢,所以我们再安装一个更加强大的tensorflow-gpu版本,它可以调用conda的接口实现gpu运算的平台,利用显卡帮助我们运算程序,以提高后期学习中的程序处理速度,提高学习效率。

基础知识信息了解

显卡算力

        在这个之前,我们首先要确保自己的电脑是英伟达显卡,并且运算能力在3.5以上,大家可以根据下面的网址查看自己电脑显卡的运算能力,然后还需要下载conda工具包和对应的gpu加速库cuDNN。

直通车:CUDA GPUs - Compute Capability | NVIDIA Developer

        后期安装CUDA通过deviceQuery.exe也可以看到当前显卡的算力。

CUDA兼容

        这里CUDA12.1是支持的最高版本的CUDA,可以向下兼容,且可以安装多个版本的CUDA,你可以通过更改环境变量来更改为你需要用到的CUDA版本。

Tensorflow gpu安装

CUDA/cuDNN匹配和下载

查看Conda driver的版本

        我们打开命令行窗口cmd,输入nvidia-smi,这里显示的是显卡的版本信息,这里显示的是conda driver的版本信息。

下载CUDA工具包

        直通车:CUDA Toolkit Archive | NVIDIA Developer

        我们去conda下载官网,下载CUDA工具包。根据刚刚我们查到的CUDA版本信息,此处我的CUDA版本为12.x,根据CUDA可以向下兼容的特性,我们可以对应下载CUDA11.4的工具包。

        在这个界面,由于我的电脑是Windows11 64位,所以我选择的是这些选项,大家要根据自己的电脑系统类型选择合适的版本进行下载。

查看对应cuDNN版本

下面查找对应的cuDNN版本,可以在Tensorflows官网中查看tensorflow-gpu跟cuda cudnn的版本对应信息.

在 Windows 环境中从源代码构建  |  TensorFlow

下载cuDNN加速库

        接下来我们打开cuDNN下载地址:

直通车:https://developer.nvidia.com/rdp/cudnn-archive

        由于我们CUDA是11的版本 对应的是cuDNN8的版本,这些版本的对应,小伙伴们一定要注意!现在我们打开cuDNN下载官网,在这里,根据刚刚查看到的cuda版本,选择适当的cuDNN版本,我刚下载的是CUDA11.4的版本,也就是CUDA11.x的版本,所以我选择的是cuDNN8.x的版本,这里我下载版本为8.2.1,然后选择windows x86的选项进行下载。

        注意:在这里点击下载的时候会跳转到注册登录页面,由于在这里我已经登录,所以没有跳转,等待安装包下载完成,我们就准备好了Tensorflow-gpu所需要的工具包,这就是已经下载好的工具包。

        如果各位小伙伴在这里遇到问题无法解决,可以在评论区进行求助。

CUDA/cuDNN安装

CUDA安装方法

        接下来我们开始安装CUDA,双击打开下载的安装包,并等待进度条加载完毕。

        点击同意并继续选择自定义,然后点击下一步。在这个界面显示的是将要安装的组件名称、版本号和电脑中该组件的版本号,当前版本号为空,则说明电脑中没有该组件。

        我们取消NVIDIA GeForce Experience这一项,然后点击下一步。这里的安装路径一般选择默认就好,也可以更改,但是文件目录一定要记清楚,后面配置环境的时候会用到

然后点击下一步,点击next,等待安装完成。

然后点击下一步,这里显示的是已经安装的所有组件的状态,然后点击关闭。

cuDNN加速库安装

        下面开始安装Gpu加速库cuDNN,将文件解压,解压完成以后,我们打开会得到如下三个目录。

        然后我们打开刚刚安装好的CUDA的根目录,然后把codnn里边并目录下的所有文件复制到CUDA的bin目录如下。

        将include里边的所有文件复制到CUDA的include文件下,lib文件夹也是如此。这样我们便完成了CUDA和cuDNN的安装。

配置CUDA/cuDNN环境变量

配置环境变量

        下面开始设置系统环境变量,右键点击此电脑,选择属性打开高级系统,设置环境变量,在系统变量里面找到path,点击编辑。我们可以看到CUDA的两个文件已经存在,点击新建浏览,找到CUDA目录。

将其上移,与其他两个环境变量一起,这样就完成了环境变量的设置。

核验是否安装成功

        可以通过nvcc -V命令查看是否配置CUDA成功

        输入nvidia-smi命令,返回GPU型号则安装成功

         同时也可以通过在CUDA执行bandwidthTest.exe和deviceQuery.exe和核验,返回PASS则表明GPU安装成功

Tensorflow-gpu安装

        接下来我们开始安装tensorflow-gpu,安装过程可以参考上篇文章tensnflow2.4的安装,这里我就不再详述。不同之处,就是我们创建并激活另一个独立环境tensorflow-gpu选择适当的版本号,小伙伴们可以根据自己的安装环境选择对应的版本安装,第二步是安装相关软件,在第三步的时候安装tensorflow-gpu,命令为pip install tensorflow-gpu==对应版本号安装完成以后就完成了tensorflow-gpu的安装。

直通车:人工智能发展历程和工具搭建学习-CSDN博客

命令安装

创建独立环境并激活

conda create -n tensorflow-gpu python==3.8conda activate tensorflow-gpu

安装相关软件包

​
# conda install numpy matplotlib PIL scikit-learn pandas 于下行命令等价pip install numpy matplotlib Pillow scikit-learn pandas -i Simple Index

安装Tensorflow-gpu

​
pip install tensorflow-gpu==2.6.0 -i Simple Index

报错处理

        ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. matplotlib 3.7.5 requires numpy<2,>=1.20, but you have numpy 1.19.5 which is incompatible. pandas 2.0.3 requires numpy>=1.20.3; python_version < "3.10", but you have numpy 1.19.5 which is incompatible.

pip uninstall numpypip install numpy==1.19.5

        TypeError: Descriptors cannot be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

pip uninstall protobuf pip install protobuf==3.20.0

校验安装结果

        最后我们测试一下是否安装成功,打开命令行窗口,激活我们刚才创建的独立环境。输入python,打开python交互模式,输入import tensorflow as tf,输入我们的测试语句tf.test.is_gpu_available(),它的输出结果为true,显示我们安装成功。

python
import tensorflow as tftf.test.is_gpu_available()exit()

这篇关于Tensorflow-GPU工具包了解和详细安装方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1069455

相关文章

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

Linux下安装Anaconda3全过程

《Linux下安装Anaconda3全过程》:本文主要介绍Linux下安装Anaconda3全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录简介环境下载安装一、找到下载好的文件名为Anaconda3-2018.12-linux-x86_64的安装包二、或者通

MySQL 安装配置超完整教程

《MySQL安装配置超完整教程》MySQL是一款广泛使用的开源关系型数据库管理系统(RDBMS),由瑞典MySQLAB公司开发,目前属于Oracle公司旗下产品,:本文主要介绍MySQL安装配置... 目录一、mysql 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL5.1

Mybatis Plus JSqlParser解析sql语句及JSqlParser安装步骤

《MybatisPlusJSqlParser解析sql语句及JSqlParser安装步骤》JSqlParser是一个用于解析SQL语句的Java库,它可以将SQL语句解析为一个Java对象树,允许... 目录【一】jsqlParser 是什么【二】JSqlParser 的安装步骤【三】使用场景【1】sql语

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使