39、基于深度学习的(拼音)字符识别(matlab)

2024-06-17 12:12

本文主要是介绍39、基于深度学习的(拼音)字符识别(matlab),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、原理及流程

深度学习中常用的字符识别方法包括卷积神经网络(CNN)和循环神经网络(RNN)。

  1. 数据准备:首先需要准备包含字符的数据集,通常是手写字符、印刷字符或者印刷字体数据集。

  2. 数据预处理:对数据集进行预处理,包括归一化、去噪、裁剪等处理,以便更好地输入到深度学习模型中。

  3. 模型选择:选择合适的深度学习模型,常用的字符识别模型包括CNN和RNN。CNN主要用于图像数据的特征提取,RNN主要用于序列数据的建模。

  4. 模型构建:根据数据集的特点和需求构建深度学习模型,设置合适的层数、节点数和激活函数等参数。

  5. 模型训练:使用已标记好的数据集对模型进行训练,通过反向传播算法不断调整模型参数,使其能够更好地拟合数据集。

  6. 模型评估:使用未标记的数据集对训练好的模型进行评估,评估模型的准确率、召回率、F1值等指标。

  7. 模型优化:根据评估结果对模型进行调优,可以对模型结构、参数、数据集等方面进行优化。

  8. 预测与应用:使用训练好的模型对新数据进行字符识别预测,应用到实际场景中,如车牌识别、验证码识别等领域。

2、准备工作

1)无噪声拼音字符的生成

代码

function [alphabet,targets] = prprob()letterA =  [0 0 1 0 0 ...0 1 0 1 0 ...0 1 0 1 0 ...1 0 0 0 1 ...1 1 1 1 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterB =  [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ]';letterC =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterD  = [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ]';letterE  = [1 1 1 1 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';letterF =  [1 1 1 1 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ]';letterG =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 1 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterH =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterI =  [0 1 1 1 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 1 1 1 0 ]';letterJ =  [1 1 1 1 1 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...1 0 1 0 0 ...0 1 0 0 0 ]';letterK =  [1 0 0 0 1 ...1 0 0 1 0 ...1 0 1 0 0 ...1 1 0 0 0 ...1 0 1 0 0 ...1 0 0 1 0 ...1 0 0 0 1 ]';letterL =  [1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';letterM =  [1 0 0 0 1 ...1 1 0 1 1 ...1 0 1 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterN =  [1 0 0 0 1 ...1 1 0 0 1 ...1 1 0 0 1 ...1 0 1 0 1 ...1 0 0 1 1 ...1 0 0 1 1 ...1 0 0 0 1 ]';letterO =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterP =  [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ]';letterQ =  [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 1 0 1 ...1 0 0 1 0 ...0 1 1 0 1 ]';letterR =  [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 1 0 0 ...1 0 0 1 0 ...1 0 0 0 1 ]';letterS =  [0 1 1 1 0 ...1 0 0 0 1 ...0 1 0 0 0 ...0 0 1 0 0 ...0 0 0 1 0 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterT =  [1 1 1 1 1 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ]';letterU =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterV =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ]';letterW =  [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 1 0 1 ...1 1 0 1 1 ...1 0 0 0 1 ]';letterX =  [1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ...0 1 0 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterY =  [1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ]';letterZ =  [1 1 1 1 1 ...0 0 0 0 1 ...0 0 0 1 0 ...0 0 1 0 0 ...0 1 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,letterH,...letterI,letterJ,letterK,letterL,letterM,letterN,letterO,letterP,...letterQ,letterR,letterS,letterT,letterU,letterV,letterW,letterX,...letterY,letterZ];targets = eye(26);

试图效果

无噪声A B C X Y Z视图

 

 

2)有噪声拼音字符的生成

代码

有噪声A B C X Y Z视图

numNoise = 30;
Xn = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*0.2,0),1);
Tn = repmat(T,1,numNoise);

视图效果

 

 

 

3、 创建第一个神经网络

说明

针对模式识别建立的具有 25 个隐藏神经元的前馈神经网络。

由于神经网络以随机初始权重进行初始化,因此每次运行该示例进行训练后的结果都略有不同。

代码

%25 个隐藏神经元的前馈神经网络。
setdemorandstream(pi);
net1 = feedforwardnet(25);
%显示网络
view(net1);

视图效果

4、 训练第一个神经网络

说明

无噪声拼音字符数据集进行训练,当网络针对训练集或验证集不再可能有改善时,训练停止。

函数 train 将数据划分为训练集、验证集和测试集。验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。

代码

%当网络针对训练集或验证集不再可能有改善时,训练停止。
net1.divideFcn = '';
%函数 train 将数据划分为训练集、验证集和测试集。
%验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。
net1 = train(net1,X,T,nnMATLAB);

 视图结果

5、 训练第二个神经网络

说明

针对含噪数据训练第二个网络,并将其泛化能力与第一个网络进行比较。

代码

net2 = feedforwardnet(25);
net2 = train(net2,Xn,Tn,nnMATLAB);

视图效果

 6、测试两个神经网络

说明

用测试数据集对训练好的网络1和网络2进行测试,X轴表示噪声强度Y轴表示误差百分比

代码

noiseLevels = 0:.05:1;
numLevels = length(noiseLevels);
percError1 = zeros(1,numLevels);
percError2 = zeros(1,numLevels);
for i = 1:numLevelsXtest = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*noiseLevels(i),0),1);Y1 = net1(Xtest);percError1(i) = sum(sum(abs(Tn-compet(Y1))))/(26*numNoise*2);Y2 = net2(Xtest);percError2(i) = sum(sum(abs(Tn-compet(Y2))))/(26*numNoise*2);
endfigure(3)
plot(noiseLevels,percError1*100,'--',noiseLevels,percError2*100);
title('识别误差百分比');
xlabel('噪声水平');
ylabel('误差');
legend('网络1','网络2','Location','NorthWest')

试图效果

 

7、总结 

基于深度学习的拼音字符识别在MATLAB中的总体流程如下:

  1. 数据集准备:收集包含拼音字符的数据集,可以是经过标记的拼音字符图片或者声音数据。

  2. 数据预处理:对数据集进行预处理,包括图像去噪、裁剪、归一化等处理,或者对声音数据进行特征提取、转换为图像数据等处理。

  3. 构建深度学习模型:选择适合拼音字符识别任务的深度学习模型,可以选择卷积神经网络(CNN)、循环神经网络(RNN)或者组合模型等。

  4. 模型训练:使用数据集对构建好的深度学习模型进行训练,调整模型参数使其能够更好地拟合数据。

  5. 模型评估:使用未标记的数据集对训练好的模型进行评估,评估模型的准确率、召回率、F1值等指标。

  6. 模型优化:根据评估结果对模型进行调优,可以调整模型结构、超参数,增加数据增强等方式来提高模型性能。

  7. 模型应用:将训练好的深度学习模型用于拼音字符识别任务,可以将其应用到实际场景中,如语音识别、文字转换等任务中。

以上是基于MATLAB的深度学习拼音字符识别的总体流程,具体实现细节可以根据具体需求和数据集的特点进行调整和优化。

主程序代码

%% 字符识别
%prprob 定义了一个包含 26 列的矩阵 X,每列对应一个字母。定义一个字母的 5×7 位图。
[X,T] = prprob;
%plotchar第三个字母 C 绘制为一个位图。
% figure(1)
% plotchar(X(:,3))
% title('不含噪声')
%% 创建第一个神经网络
%25 个隐藏神经元的前馈神经网络。
setdemorandstream(pi);
net1 = feedforwardnet(25);
%显示网络
view(net1);%% 训练第一个神经网络
%当网络针对训练集或验证集不再可能有改善时,训练停止。
net1.divideFcn = '';
%函数 train 将数据划分为训练集、验证集和测试集。
%验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。
net1 = train(net1,X,T,nnMATLAB);
%% 训练第二个神经网络
%针对含噪数据训练第二个网络,并将其泛化能力与第一个网络进行比较。
%数据集加噪声
numNoise = 30;
Xn = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*0.2,0),1);
Tn = repmat(T,1,numNoise);
figure(2)
plotchar(Xn(:,3))
title('含噪声')
%创建并训练第二个网络。
net2 = feedforwardnet(25);
net2 = train(net2,Xn,Tn,nnMATLAB);%% 测试两个神经网络
noiseLevels = 0:.05:1;
numLevels = length(noiseLevels);
percError1 = zeros(1,numLevels);
percError2 = zeros(1,numLevels);
for i = 1:numLevelsXtest = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*noiseLevels(i),0),1);Y1 = net1(Xtest);percError1(i) = sum(sum(abs(Tn-compet(Y1))))/(26*numNoise*2);Y2 = net2(Xtest);percError2(i) = sum(sum(abs(Tn-compet(Y2))))/(26*numNoise*2);
endfigure(3)
plot(noiseLevels,percError1*100,'--',noiseLevels,percError2*100);
title('识别误差百分比');
xlabel('噪声水平');
ylabel('误差');
legend('网络1','网络2','Location','NorthWest')

程序文件包

这篇关于39、基于深度学习的(拼音)字符识别(matlab)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069411

相关文章

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶