基于GTX的64B66B编码IP生成(高速收发器二十)

2024-06-17 10:44

本文主要是介绍基于GTX的64B66B编码IP生成(高速收发器二十),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  点击进入高速收发器系列文章导航界面


1、配置GTX IP 相关参数

  前文讲解了64B66B编码解码原理,以及GTX IP实现64B66B编解码的相关信号组成,本文生成64B66B编码的GTX IP。

  首先如下图所示,需要对GTX共享逻辑进行设置,为了便于扩展,与8B10B编码一致,将共享逻辑放在IP外部的示例工程中。

在这里插入图片描述

图1 设置“GT Selection”界面

  之后将发送通道和接收通道的线速率均设置为10Gbps,参考时钟频率选择156.25MHz(开发板提供给高速收发器的参考时钟频率)。由于线速率大于5.5Gbps,因此接收通道和发送通道的时钟只能来自QPLL输出。其余设置与8B10B编码保持一致。

在这里插入图片描述

图2 设置”Line Rate,RefClk Selection”界面

  设置“Encoding and Clocking”界面时,根据前文可知,GTX的发送通道可以由用户逻辑提供变速器的计数器,也可以使用IP内部自带的计数器,因为GTH等高速收发器内部变速器没有自带计数器,为了与其余高速收发器设计保持一致,1处发送通道选择使用外部计数器的64B66B编码方式。

  此处可以计算出PCS内部并行数据传输时钟userclk和用户接口时钟userclk2的频率,首先userclk等于线速率除以内部数据位宽,线速率为10Gbps,内部数据位宽(Internal Data Width)32位,计算得到userclk为312.5MHz。而用户接口数据位宽为64位,为了保持带宽恒定,用户接口时钟频率应该是内部时钟频率的一半,即userclk2等于156.25MHz。

  数据位宽选择64位,降低用户时钟频率,有利于时序稳定。接收通道不需要用户提供计数器,直接选择64位数据位宽的64B66B编码即可。

  在接收通道和发送通道依旧使能内部Buffer对数据同步,将发送通道和接收通道的时钟来源均设置为TXOUTCLK,而TXOUTCLK来源于TXPLLREFCLK,如下图所示。

在这里插入图片描述

图3 设置“Encoding and Clocking”界面

  即使经过前面8B10B的讲解,有部分读者还是会疑惑,为什么发送通道和接收通道内部就必须使用buffer同步数据,以发送通道为例,此处在此说明。

  首先要清楚buffer两侧的时钟域分别是什么,各自时钟域的来源是什么,是否真的存在相位差,然后就知道为什么必须要同步了。

  如下图所示,发送通道的buffer两侧的时钟分别是TXUSRCLK(PCS内部传输数据时钟)和XCLK(PMA的并行时钟),TXUSRCLK和TXUSRCLK2都是TXOUTCLK通过同一个锁相环生成的,因此不存在相位差,他们之间也不需要同步。

在这里插入图片描述

图4 发送通道的Buffer

  在此之后,需要知道TXOUTCLK与XCLK的来源。下图是发送通道内部的时钟结构,前文也进行过详细分析。

  根据图3的设置可知TXOUCLK来源于TXPLLREFCLK,而高速收发器的PLL应该就是CPLL或者QPLL,因此下图中TXOUCLK的来源应该是3(CPLREFCLK)或者4(QPLLREFCLK)。

  再看XCLK来源,5处选择QPLL或者CPLL的输出时钟(与其参考时钟相位相同)作为PMA的输入时钟,然后经过内部的相位调节模块(Phase Interp)调节时钟与PMA数据的相位关系,再经过分频得到并串转换的时钟信号。因此PMA的并行时钟信号就是TXOUTCLKPCS,即XCLK。

  TXOUTCLKPCS的相位经过Phase Interp调节后,很可能与QPLL或者CPLL的参考时钟相位已经不同了,那么XCLK与TXUSRCLK的相位也就不同,因此需要同步,个人的理解就是这么多了。

在这里插入图片描述

图5 发送通道内部的时钟架构

  至于上图中的分频系数如何设置,含义是什么,前文已经详细讲解过,本文不再赘述。接收通道的原理类似,只不过是将Phase Interp换成了CDR而已。

  回归正文,如下图所示,配置“Comma Alignment and Equalization”界面,由于64B66B没有K码相关内容,因此不能设置K码对齐,需要用户去控制同步头实现手动对齐,后续代码设计时进行讲解。

  由于10Gbps线速率比较高,接收通道选择DFE均衡模式,将发送端的加重和极性控制等选项勾选。

在这里插入图片描述

图6 配置“Comma Alignment and Equalization”界面

  之后设置“PCIe,SATA,PRBS”界面,如下图所示,只需要勾选回环控制即可,其余保持不变。

在这里插入图片描述

图7 设置“PCIe,SATA,PRBS”界面

  下图是设置通道绑定和时钟纠正的界面,其中通道绑定只能在设计中存在多个高速收发器时使用。启用时钟纠正功能,每发送5000字节数据会发送一个时钟序列,用于时钟纠正。

在这里插入图片描述

图8 设置“CB and CC Sequence”界面

  最后来到IP设置的汇总界面,如下图所示,其中USRCLK位312.5MHz,USRCLK2为156.25MHz,与前文计算结果一致。

在这里插入图片描述

图9 GTX设置参数汇总界面

2、模块分析

  打开IP的示例工程,主要关注下图几个重要模块,多数与8B10B编码的模块类似。首先时QPLL、复位、用户时钟生成的相关模块。与8B10B编码不同的是多了一个手动同步的模块。

在这里插入图片描述

图10 GTX示例工程模块分析

  同步模块通过判断接收的同步头是否正确,来拉高Slip信号调节开始转换的位置,来达到接收数据同步的目的,RTL视图如下所示。

在这里插入图片描述

图11 同步模块的RTL视图

  官方示例工程的手动同步模块写的比较繁琐,经过前面讲解可知,在正常传输数据时,64B66B编码会有控制码和数据码两种,同步头分别是2’b01和2’b10。

  因此接收端在上电后,可以根据接收到的同步头的状态判断接收的数据是否同步了,如果接收到的同步头不是2’b01或者2’b10,则把Slip信号拉高一个时钟,等待一段时间后继续检测,直到连续检测32个时钟接收的数据均正常时,把同步成功信号拉高。

  数据同步与ISERDES的原理类似,后文的自定义64B66B协议时,会自己设计同步模块,比较简单,本文就不讲述官方该模块的设计了,有兴趣的可以看看。

  运行示例工程的仿真,QPLL仿真结果如下所示。

在这里插入图片描述

图12 QPLL仿真结果

  发送通道的用户接口时序如下图所示,帧头和帧尾的控制帧数据对应的同步头为2’b10,而纯数据帧的同步头为2’b01。当外部想GTX中连续输入32个数据(计数器txsequence计数到31)时,txdata_in需要暂停输入数据,清空内部变速器中的数据。

在这里插入图片描述

图13 发送通道时序

  当接收通道复位完成后,接收端需要对接收数据进行同步,如下图所示,多次拉高rxgeraboxslip,直到接收到的同步头正常为止。

在这里插入图片描述

图14 接收端同步时序

  如下图所示,接收到的同步头数据txheader_out并不全为2’b01或者2’b10,说明接收的数据并没有同步成功,因此将rxgeraboxslip拉高一个时钟,过一段时间后继续检测txheader_out状态,直到持续32个时钟接收到txheader_out的状态均正常时,认为同步完成。

在这里插入图片描述

图15 同步时序

  仿真采用回环设计,如下图所示,发送数据经过IP收发后,接收端仍然能够接收到数据,证明该IP的使用没有问题。

在这里插入图片描述

图16 收发数据时序

  注意该IP并不具备64B66B编码和解码的能力,64B66B编码和解码是通过示例工程的两个模块完成的,对应的RTL视图如下图所示。

在这里插入图片描述

图17 加扰和解扰模块的RTL视图

  后续用户在设计自己的工程时,可以直接使用这两个模块,对发送数据加扰,接收数据解扰。

  由于本文只使用了一个高速收发器,因此不对示例工程上板,后续在自定义的64B66B工程中进行上板测试。


  如果对文章内容理解有疑惑或者对代码不理解,可以在评论区或者后台留言,看到后均会回复!

  如果本文对您有帮助,还请多多点赞👍、评论💬和收藏⭐!您的支持是我更新的最大动力!将持续更新工程!

这篇关于基于GTX的64B66B编码IP生成(高速收发器二十)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069221

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景