C# OpenCV 部署RecRecNet广角图像畸变矫正

2024-06-17 09:28

本文主要是介绍C# OpenCV 部署RecRecNet广角图像畸变矫正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C# OpenCV 部署RecRecNet广角图像畸变矫正

目录

说明

效果

模型信息

项目

代码

下载


说明

ICCV2023 - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline Model and DoF-based Curriculum Learning

参考:

https://github.com/KangLiao929/RecRecNet

https://github.com/hpc203/recrecnet-opencv-dnn

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 162]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int inpHeight;
        int inpWidth;
        string modelpath;

        int grid_h = 8;
        int grid_w = 8;
        Mat grid;
        Mat W_inv;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/model_deploy.onnx";

            inpHeight = 256;
            inpWidth = 256;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            Common.get_norm_rigid_mesh_inv_grid(ref grid, ref W_inv, inpHeight, inpWidth, grid_h, grid_w);

            image_path = "test_img/10.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);
            dt1 = DateTime.Now;

            Mat img = new Mat();

            Cv2.Resize(image, img, new OpenCvSharp.Size(inpWidth, inpHeight));

            img.ConvertTo(img, MatType.CV_32FC3, 1.0f / 127.5f, -1.0f);

            BN_image = CvDnn.BlobFromImage(img);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            float* offset = (float*)outs[0].Data;

            Mat tp = new Mat();
            Mat ori_mesh_np_x = new Mat();
            Mat ori_mesh_np_y = new Mat();
            Common.get_ori_rigid_mesh_tp(tp, ori_mesh_np_x, ori_mesh_np_y, offset, inpHeight, inpWidth, grid_h, grid_w);
            Mat T = W_inv * tp;   
            T = T.T();    

            Mat T_g = T * grid;

            Mat output_tps = Common._interpolate(BN_image, T_g, new OpenCvSharp.Size(inpWidth, inpHeight));
            Mat rectangling_np = (output_tps + 1) * 127.5;
            rectangling_np.ConvertTo(rectangling_np, MatType.CV_8UC3);
            Mat input_np = (img + 1) * 127.5;

            List<Mat> outputs = new List<Mat>();
            outputs.Add(rectangling_np);
            outputs.Add(input_np);
            outputs.Add(ori_mesh_np_x);
            outputs.Add(ori_mesh_np_y);

            Mat input_with_mesh = Common.draw_mesh_on_warp(outputs[1], outputs[2], outputs[3]);

            Cv2.CvtColor(outputs[0], outputs[0], ColorConversionCodes.BGR2RGB);

            Cv2.ImShow("mesh", input_with_mesh);

            result_image = outputs[0].Clone();
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}
 

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;int inpHeight;int inpWidth;string modelpath;int grid_h = 8;int grid_w = 8;Mat grid;Mat W_inv;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){modelpath = "model/model_deploy.onnx";inpHeight = 256;inpWidth = 256;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);Common.get_norm_rigid_mesh_inv_grid(ref grid, ref W_inv, inpHeight, inpWidth, grid_h, grid_w);image_path = "test_img/10.jpg";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);dt1 = DateTime.Now;Mat img = new Mat();Cv2.Resize(image, img, new OpenCvSharp.Size(inpWidth, inpHeight));img.ConvertTo(img, MatType.CV_32FC3, 1.0f / 127.5f, -1.0f);BN_image = CvDnn.BlobFromImage(img);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;float* offset = (float*)outs[0].Data;Mat tp = new Mat();Mat ori_mesh_np_x = new Mat();Mat ori_mesh_np_y = new Mat();Common.get_ori_rigid_mesh_tp(tp, ori_mesh_np_x, ori_mesh_np_y, offset, inpHeight, inpWidth, grid_h, grid_w);Mat T = W_inv * tp;   T = T.T();    Mat T_g = T * grid;Mat output_tps = Common._interpolate(BN_image, T_g, new OpenCvSharp.Size(inpWidth, inpHeight));Mat rectangling_np = (output_tps + 1) * 127.5;rectangling_np.ConvertTo(rectangling_np, MatType.CV_8UC3);Mat input_np = (img + 1) * 127.5;List<Mat> outputs = new List<Mat>();outputs.Add(rectangling_np);outputs.Add(input_np);outputs.Add(ori_mesh_np_x);outputs.Add(ori_mesh_np_y);Mat input_with_mesh = Common.draw_mesh_on_warp(outputs[1], outputs[2], outputs[3]);Cv2.CvtColor(outputs[0], outputs[0], ColorConversionCodes.BGR2RGB);Cv2.ImShow("mesh", input_with_mesh);result_image = outputs[0].Clone();pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}

下载

源码下载

这篇关于C# OpenCV 部署RecRecNet广角图像畸变矫正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069069

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

C#利用Free Spire.XLS for .NET复制Excel工作表

《C#利用FreeSpire.XLSfor.NET复制Excel工作表》在日常的.NET开发中,我们经常需要操作Excel文件,本文将详细介绍C#如何使用FreeSpire.XLSfor.NET... 目录1. 环境准备2. 核心功能3. android示例代码3.1 在同一工作簿内复制工作表3.2 在不同

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

C#实现SHP文件读取与地图显示的完整教程

《C#实现SHP文件读取与地图显示的完整教程》在地理信息系统(GIS)开发中,SHP文件是一种常见的矢量数据格式,本文将详细介绍如何使用C#读取SHP文件并实现地图显示功能,包括坐标转换、图形渲染、平... 目录概述功能特点核心代码解析1. 文件读取与初始化2. 坐标转换3. 图形绘制4. 地图交互功能缩放

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

C#使用SendMessage实现进程间通信的示例代码

《C#使用SendMessage实现进程间通信的示例代码》在软件开发中,进程间通信(IPC)是关键技术之一,C#通过调用WindowsAPI的SendMessage函数实现这一功能,本文将通过实例介绍... 目录第一章:SendMessage的底层原理揭秘第二章:构建跨进程通信桥梁2.1 定义通信协议2.2