代码随想录 day37|day38|day39

2024-06-17 09:04

本文主要是介绍代码随想录 day37|day38|day39,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

贪心续
合并区间
题意:将重合的区间合并。
思路:先把区间按照左端点排序。之后使用一个st表示左端点,ed表示右端点,如果区间是分离的那么就把先的区间加入到集合。
代码

 struct comp{bool operator()(const vector<int> &lhs ,const vector<int> &rhs){if(lhs[0]<rhs[0]){return true  ; }return false ; }} ; vector<vector<int>> merge(vector<vector<int>>& intervals) {vector<vector<int>> res ; sort(intervals.begin() , intervals.end() , comp()) ;int l =  intervals[0][0], r = intervals[0][1] ; for(int i = 1 ; i <  intervals.size();  ++i){if(intervals[i][0]<= r){if(r< intervals[i][1])r = intervals[i][1] ; }else if(intervals[i][0]> r){res.push_back(vector<int>{l,r}) ; l = intervals[i][0] ;r= intervals[i][1] ; }}res.push_back(vector<int>{l,r}) ; return res ; 

动态规划
动态规划五部曲:
1.进行对动规数组表示的定义。一维表示,二维表示 。
2.对动规数组进行初始化。
3.对状态转移的方程进行定义。
4.确定动规的遍历顺序
5.打印动规数组。
动规基础
斐波那契数
思路:
1.dp[i] 表示第i个斐波那契数。
2.动规数组初始化,dp[0] = 0 , dp[1] = 1 ;
3.状态转移方程定义:dp[i] = dp[i-1] + dp[i-2] ;
4.确定动规的遍历顺序是从小到大。
5.打印dp数组。
爬楼梯
思路:
1.dp[i] 表示到第i层楼梯的爬法。
2.动态规划的数组的初始化。dp[1] = 1 , dp[2] =2 ;
3.动态转移方程:dp[i] = dp[i-1] + dp[i-2] ; // 第i层的楼爬法是 dp[i-1]爬法 + dp[i-2] 爬法;
4.遍历方向从小到大。
5.打印dp数组。
代码

class Solution {
public:int climbStairs(int n){const int N = 47 ;int dp[N]  = {0};dp[1] = 1 , dp[2] =2 ; for(int i =3 ; i<=n ; ++ i){dp[i] = dp[i-1] + dp[i-2] ; }   return dp[n] ; }
};

使用最小花费爬楼梯
1.dp[i] 表示爬到第i层的花费。
2.dp[] 全部初始化为0 。
3.遍历顺序从i=0到i=9 。
4.状态转移 dp[i] = dp[i-1] + cost[i-1] ; dp[i] = dp[i-2] + cost[i-2] ; 这是在dp[i-1] + cost[i-1] 和dp[i-2] + cost[i-2] 相比较的情况下。 表示到第i层时的花费。
5.打印dp数组

   int minCostClimbingStairs(vector<int>& cost) {const int  N = 1000  + 10 ; int dp[N] = {0} ; for(int i = 2; i<=cost.size() ; ++ i){if(dp[i-1] + cost[i-1] < dp[i-2] + cost[i-2])dp[i] += dp[i-1] + cost[i-1] ; // 支付的费用最少表示else dp[i]  += dp[i-2] + cost[i-2] ; }return  dp[cost.size()] ; }

[不同路径](https://leetcode.cn/problems/unique-paths/description/)
题意:一个机器人从左上角到右下角的总共有多少条路径。
思路:
1.dp[i][j] 表示:从左上角到i,j点的多少条路径。
2.因为机器人到边缘永远是一条路径,所以x=0 时 所有的元素都为0 。 y=0 时,所有的元素都为0。
3.状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1] 是因为机器人从上方或者左方来的
4.遍历顺序从上往下,从左往右
5.打印dp数组

      const int N = 110 ;int dp[N][N] = {0};for(int i = 1; i <= m  ; ++ i ){dp[i][1] = 1 ; }for(int i = 1; i <= n  ; ++ i ){dp[1][i] = 1 ; }for(int i = 2 ; i <=m ; ++ i )for(int j = 2 ; j <= n ;++ j){dp[i][j] = dp[i-1][j] + dp[i][j-1] ; }return dp[m][n] ;````[不同路径2](https://leetcode.cn/problems/unique-paths-ii/description/) 题意:从起点到终点问有多少条路径,并且中间有个石头。 要绕过石头的路径。思路:1.dp[i][j] 表示:从左上角到i,j点的多少条路径。2.2.因为机器人到边缘永远是一条路径,所以x=0 时 所有的元素都为0 。 y=0 时,所有的元素都为0。  因为如果石头在这条边缘那么这个石头之后的路都走不了。这也要加入到初始化中3.状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1] ; if(obstacleGrid[i][j] == 1) continue ; 4.遍历顺序依然是从上往下,从左往右5.打印dp数组代码
     const int N = 110 ;int dp[N][N] = {0};int m = obstacleGrid.size() ;int n = obstacleGrid[0].size() ; for(int i = 0 ; i<m && obstacleGrid[i][0] == 0; ++ i){dp[i][0] = 1 ; }for(int j = 0 ; j< n && obstacleGrid[0][j] == 0 ; ++ j){dp[0][j] = 1 ; }for(int i = 1 ; i<m ; ++ i)for(int j = 1 ; j< n ; ++ j){if(obstacleGrid[i][j] ==1 ){continue ; }dp[i][j] = dp[i-1][j] + dp[i][j-1] ; }return dp[m-1][n-1] ; 

这篇关于代码随想录 day37|day38|day39的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069018

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La