DP:01背包问题

2024-06-17 07:20
文章标签 问题 dp 01 背包

本文主要是介绍DP:01背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背包问题的概述

背包问题是⼀种组合优化的NP完全问题。
本质上是为了找出“带有限制条件的组合最优解”

1、根据物品的个数,分为如下几类:

• 01背包问题:每个物品只有⼀个(重点掌握)
• 完全背包问题:每个物品有无限多个(重点掌握)

• 多重背包问题:每件物品最多有n个
• 混合背包问题:每个物品会有上⾯三种情况
• 分组背包问题:物品有n组,每组物品⾥有若⼲个,每组⾥最多选⼀个物品

2、根据背包是否装满,⼜分为两类

• 不⼀定装满背包(重点)
• 背包⼀定装满(重点)

3、优化方案

• 空间优化:滚动数组(重点掌握)
• 单调队列优化
• 贪心优化

4、根据限定条件的个数,⼜分为两类

• 限定条件只有⼀个:比如体积->普通的背包问题(重点)
• 限定条件有两个:比如体积+重量->⼆维费用背包问题(重点)

5、根据不同的问法,⼜分为很多类:

• 输出方案
• 求方案总数
• 最优方案
• 方案可行性

        背包问题的题型非常多样,其中最重要以及基础的就是01背包和完全背包以及背包是否装满的讨论(会通过牛客的两道模版题探究),还有滚动数组的优化策略( 在以往的动态规划中,我们几乎很少去谈论空间优化,因为对于一道dp题来说,能解决出来就已经很不容易了,我们不太会关注其空间复杂度。但是在背包问题中,滚动数组的优化是有一定套路可言的,并且在某些情况下对时间也是有一定优化的!!

二、01背包[模版]

【模板】01背包_牛客题霸_牛客网

#include<iostream>
#include<string.h>
using namespace std;
//定义成全局,就不用在栈里面进行初始化,并且我们可以在栈上开辟的空间更大const int N=1001;
int n,V,v[N],w[N];
int dp[N][N];int main() 
{cin>>n>>V;//个数和体积for(int i=1;i<=n;++i) cin>>v[i]>>w[i];//解决第一问for(int i=1;i<=n;++i)for(int j=1;j<=V;++j){dp[i][j]=dp[i-1][j];//不选第i个物品的情况if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}   cout<<dp[n][V]<<endl;//解决第二问memset(dp,0,sizeof dp);//修改成0//先进行初始化for(int j=1;j<=V;++j) dp[0][j]=-1;//跟0区分开for(int i=1;i<=n;++i)for(int j=1;j<=V;++j){dp[i][j]=dp[i-1][j];//不选第i个物品的情况if(j>=v[i]&&dp[i-1][j-v[i]]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}   cout<<(dp[n][V]==-1?0:dp[n][V])<<endl;
}

滚动数组优化(空间复杂度N^2——>N   时间复杂度常数提升

#include<iostream>
#include<string.h>
using namespace std;
//定义成全局,就不用在栈里面进行初始化,并且我们可以在栈上开辟的空间更大
const int N=1001;
int n,V,v[N],w[N];
int dp[N][N];int main() 
{cin>>n>>V;//个数和体积for(int i=1;i<=n;++i) cin>>v[i]>>w[i];//解决第一问for(int i=1;i<=n;++i)for(int j=V;j>=v[i];--j)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<dp[V]<<endl;//解决第二问memset(dp,0,sizeof dp);//修改成0//先进行初始化for(int j=1;j<=V;++j) dp[j]=-0x3f3f3f3f;//跟0区分开for(int i=1;i<=n;++i)for(int j=V;j>=v[i];--j)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<(dp[V]<0?0:dp[V])<<endl;
}

       对于不存在的状态,因为我们该题中要求的是max,所以我们设成-0x3f3f3f3f保证该状态不被选到,设置成这个的原因是避免了越界的风险同时又保证了不存在的状态是小于0的,且不会影响填报!!

三、和为目标和的最长子序列长度

. - 力扣(LeetCode)

       这题就是非常明显的01背包问题,其中每个数只有选或者不选,目标值相当于是容量,且要刚刚好。 dp[i][j]表示从前i个数选,和恰好为j的最长子序列。

class Solution {
public:int lengthOfLongestSubsequence(vector<int>& nums, int target) {int n=nums.size();//01背包问题  dp[i][j]表示从前i个数选择 正好凑成j的的子序列的最长长度vector<vector<int>> dp(n+1,vector<int>(target+1));//分析状态转移方程 dp[i][j] //如果我不选i dp[i-1][j]//如果我选i   dp[i-1][j-nums[i-1]]+1 //初始化 如果i为0无数可选  没有这个状态for(int j=1;j<=target;++j) dp[0][j]=-0x3f3f3f3f;//给一个小的值  保证选最大值的时不会被选上for(int i=1;i<=n;++i)for(int j=0;j<=target;++j){dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=max(dp[i][j],dp[i-1][j-nums[i-1]]+1);}return dp[n][target]<0?-1:dp[n][target];}
};

滚动数组优化:

class Solution {
public:int lengthOfLongestSubsequence(vector<int>& nums, int target) {int n=nums.size();//01背包问题  dp[i][j]表示从前i个数选择 正好凑成j的的子序列的最长长度vector<int> dp(target+1,-0x3f3f3f3f);//分析状态转移方程 dp[i][j] //如果我不选i dp[i-1][j]//如果我选i   dp[i-1][j-nums[i-1]]+1 //初始化 如果i为0无数可选  没有这个状态dp[0]=0;for(int i=1;i<=n;++i)for(int j=target;j>=nums[i-1];--j)dp[j]=max(dp[j],dp[j-nums[i-1]]+1);return dp[target]<0?-1:dp[target];}
};

四、分割等和子集(需转化)

. - 力扣(LeetCode)

该题并不能直接用01背包问题,首先需要先将问题进行转化——在数组中选一些数,让这些数的和为sum/2。 

class Solution {
public:bool canPartition(vector<int>& nums) {int sum=accumulate(nums.begin(),nums.end(),0);if(sum%2) return false;//是奇数,直接返回//是偶数的时候 dp[i][j]表示从前i个数中选,所有选法中能否凑成j这个数int aim=sum/2;int n=nums.size();vector<vector<bool>> dp(n+1,vector<bool>(aim+1));//初始化,当j=0时,显然都是true  当i=0时,必然为falsefor(int i=0;i<=n;++i) dp[i][0]=true;//开始填表for(int i=1;i<=n;++i)for(int j=1;j<=aim;++j)//不选i的话  dp[i][j]=dp[i-1][j]//选i的话    dp[i][j]=dp[i-1][j-nums[i-1]]   前提j>=nums[i-1]{dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=dp[i][j]||dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

滚动数组优化:

class Solution {
public:bool canPartition(vector<int>& nums) {int sum=accumulate(nums.begin(),nums.end(),0);if(sum%2) return false;//是奇数,直接返回//是偶数的时候 dp[i][j]表示从前i个数中选,所有选法中能否凑成j这个数int aim=sum/2;int n=nums.size();vector<bool> dp(aim+1);//初始化,当j=0时,显然都是true  当i=0时,必然为falsedp[0]=true;//开始填表for(int i=1;i<=n;++i)for(int j=aim;j>=nums[i-1];--j)//不选i的话  dp[i][j]=dp[i-1][j]//选i的话    dp[i][j]=dp[i-1][j-nums[i-1]]   前提j>=nums[i-1]dp[j]=dp[j]||dp[j-nums[i-1]];return dp[aim];}
};

 五、目标和(需转化)

. - 力扣(LeetCode)

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 从nums中选择一些数能够凑成sum+target/2  转化成01背包问题int sum=accumulate(nums.begin(),nums.end(),0);int aim=(sum+target)>>1;if(aim<0||(sum+target)%2) return 0;int n=nums.size();//dp[i][j] 从前i个数选 变成j有多少种选法    //如果不选i dp[i-1][j]//如果选i   +=dp[i-1][j-nums[i-1]]//分析初始化 i=0的时候 必为0  j=0的时候 不好判断,因为nums[i]可能是0 //但是不需要初始化,因为要满足j>=nums[i] 那么nums[i]必然要为0才可以满足//所以绝对不会用到斜对角的值,而是只会用到上面的状态。vector<vector<int>> dp(n+1,vector<int>(aim+1));dp[0][0]=1;for(int i=1;i<=n;++i)for(int j=0;j<=aim;++j) {dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]+=dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

 滚动数组优化:

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 从nums中选择一些数能够凑成sum+target/2  转化成01背包问题int sum=accumulate(nums.begin(),nums.end(),0);int aim=(sum+target)>>1;if(aim<0||(sum+target)%2) return 0;int n=nums.size();//dp[i][j] 从前i个数选 变成j有多少种选法    //如果不选i dp[i-1][j]//如果选i   +=dp[i-1][j-nums[i-1]]//分析初始化 i=0的时候 必为0  j=0的时候 不好判断,因为nums[i]可能是0 //但是不需要初始化,因为要满足j>=nums[i] 那么nums[i]必然要为0才可以满足//所以绝对不会用到斜对角的值,而是只会用到上面的状态。vector<int> dp(aim+1);dp[0]=1;for(int i=1;i<=n;++i)for(int j=aim;j>=nums[i-1];--j) dp[j]+=dp[j-nums[i-1]];return dp[aim];}
};

六、最后一块石头的重量||(需转化)

. - 力扣(LeetCode)

class Solution {
public:int lastStoneWeightII(vector<int>& nums) {//让一堆里面的数尽可能接近sum/2int sum=accumulate(nums.begin(),nums.end(),0);int aim=sum/2,n=nums.size();//dp[i][j]表示从前i个数选择,总和不超过j,此时所有元素的最大和vector<vector<int>> dp(n+1,vector<int>(aim+1));//分析初始化 如果都为0 就返回0 如果i为0 也是0  如果j为0 不用初始化for(int i=1;i<=n;++i)for(int j=1;j<=aim;++j){//如果不选i dp[i-1][j]//如果选i  dp[i-1][j-nums[i-1]] 找最大和dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=max(dp[i][j],dp[i-1][j-nums[i-1]]+nums[i-1]);}return sum-2*dp[n][aim];}
};

滚动数组优化:

class Solution {
public:int lastStoneWeightII(vector<int>& nums) {//让一堆里面的数尽可能接近sum/2int sum=accumulate(nums.begin(),nums.end(),0);int aim=sum/2,n=nums.size();//dp[i][j]表示从前i个数选择,总和不超过j,此时所有元素的最大和vector<int> dp(aim+1);//分析初始化 如果都为0 就返回0 如果i为0 也是0  如果j为0 不用初始化//如果不选i dp[i-1][j]//如果选i  dp[i-1][j-nums[i-1]] 找最大和for(int i=1;i<=n;++i)for(int j=aim;j>=nums[i-1];--j)dp[j]=max(dp[j],dp[j-nums[i-1]]+nums[i-1]);return sum-2*dp[aim];}
};

七、将一个数字表示成幂的和的方案数

. - 力扣(LeetCode)

知识点1:double不支持取模,需要取模又担心溢出只能使用long long

知识点2:pow函数是求数的任意次幂

知识点3:10^9+7相当于1e9+7

class Solution {
public:int numberOfWays(int n, int x) {//统计方案数//dp[i][j]表示从前i个数的x次幂之和  恰好等于j 的方案数//i=0时 无数可选 方案肯定是const int N=1e9+7;vector<vector<long long>> dp(n+1,vector<long long>(n+1)); //double不支持取模    dp[0][0]=1;for(int i=1;i<=n;++i)for(int j=0;j<=n;++j){//不选i dp[i][j]=dp[i-1][j]//选i   dp[i][j]+=dp[i-1][j-pow(i,x)]dp[i][j]=dp[i-1][j];long long p=pow(i,x); if(j>=p) dp[i][j]+=dp[i-1][j-p];dp[i][j]%=N;}return dp[n][n];}
};

 滚动数组优化:

class Solution {
public:int numberOfWays(int n, int x) {//统计方案数//dp[i][j]表示从前i个数的x次幂之和  恰好等于j 的方案数//i=0时 无数可选 方案肯定是const int N=1e9+7;vector<long long> dp(n+1); //double不支持取模    dp[0]=1;for(int i=1;i<=n;++i){long long p=pow(i,x);for(int j=n;j>=p;--j)//不选i dp[i][j]=dp[i-1][j]//选i   dp[i][j]+=dp[i-1][j-pow(i,x)]dp[j]=(dp[j]+dp[j-p])%N;}return dp[n];}
};

 

这篇关于DP:01背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068800

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.