caffe - faster r-cnn(python)之路

2024-06-17 01:18
文章标签 python cnn caffe faster

本文主要是介绍caffe - faster r-cnn(python)之路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. faster-rcnn安装与运行
  下列faster-rcnn的安装参考github作者给出的教程:https://github.com/rbgirshick/py-faster-rcnn

  • caffe的安装参考官网教程( see:Caffe installation instructions)
    note:将makefile.config中这两行注释去掉
WITH_PYTHON_LAYER := 1
USE_CUDNN := 1
  • 将Faster R-CNN下载到本地
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
  • 假设下载下来存放的路径根目录为:FRCN_ROOT
  • 编译Cython模块
cd $FRCN_ROOT/lib
make
  • 编译caffe和pycaffe
cd $FRCN_ROOT/caffe-fast-rcnn
make -j8 && make pycaffe
  • 下载pre-computed Faster R-CNN detectors
cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh

安装成功之后,运行demo.py测试下,可以试下自己的图片:

cd $FRCN_ROOT
./tools/demo.py

更多参考官方教程:https://github.com/rbgirshick/py-faster-rcnn


2. 文件夹导读

  • caffe-fast-rcnn:caffe框架目录
  • data:用来存放pretrained模型以及读取文件的cache缓存,还有一些下载模型的脚本
  • experiments:存放配置文件以及运行的log文件,另外这个目录下有scripts,里面存放end2end和alt_opt两种训练方式的脚本
  • lib:用来存放一些python接口文件,如其下的datasets主要负责数据库读取,config负责一些训练的配置选项
  • models:里面存放了三个模型文件,小型网络ZF,中型网络VGG_CNN_M_1024以及大型网络VGG16,根据你的硬件条件来选择使用哪种网络,ZF和VGG_CNN_M_1024需要至少3G内存,VGG16需要更多的内存,但不会超过11G
  • output:这里存放的是训练完成后的输出目录,这是运行了训练后才会出现的目录
  • tools:里面存放的是训练和测试的Python文件

    3. 制作数据集
      3.1.用标注工具labelImg

安装:sudo pip install labelImg 
运行:labelImg

  这里写图片描述
  可以open一张,也可以open dir导入一个文件。利用Create RectBox圈出目标区域,之后对区域进行类别标注。然后利用next image或者prev Image切换下一张或者前一张。标记错的可以直接点击后delete,….很简单,不再详细介绍。
  标注之后保存后的形式和VOC中的Annotations文件夹中的格式一样。
  

<annotation verified="no"><folder>images</folder><filename>00002</filename><path>/home/apple/work/py-faster-rcnn/images/00002.jpg</path><source><database>Unknown</database></source><size><width>500</width><height>375</height><depth>3</depth></size><segmented>0</segmented><object><name>dog</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>2</xmin><ymin>2</ymin><xmax>264</xmax><ymax>372</ymax></bndbox></object><object><name>cat</name><pose>Unspecified</pose><truncated>1</truncated><difficult>0</difficult><bndbox><xmin>276</xmin><ymin>82</ymin><xmax>499</xmax><ymax>375</ymax></bndbox></object>
</annotation>

  参考博客:http://blog.csdn.net/jesse_mx/article/details/53606897      https://bealin.github.io/2016/10/23/Caffe%E5%AD%A6%E4%B9%A0%E7%B3%BB%E5%88%97%E2%80%94%E2%80%946%E4%BD%BF%E7%94%A8Faster-RCNN%E8%BF%9B%E8%A1%8C%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B/

 2.2.使用自己的程序进行标记

  目标:对图像中目标标注bounding box,标签以下列形式展现:
  图片名 目标类别 起始点x坐标 y坐标 结束点x坐标 y坐标

00001.jpg car 63 96 180 341
00002.jpg car 85 39 436 330
00003.jpg car 40 43 255 346
00004.jpg car 78 22 433 360
00005.jpg car 147 74 414 370

实现代码

# -*- coding: utf-8 -*-
import os
import cv2
import numpy as np# 当鼠标按下时变为 True
drawing = False
ix,iy = -1,-1
ox,oy = -1,-1
# 创建回调函数
def draw_circle(event,x,y,flags,param):global ix,iy,ox,oy,drawing# 当按下左键是返回起始位置坐标if event==cv2.EVENT_LBUTTONDOWN:drawing=Trueix,iy = x,y# 当鼠标左键按下并移动是绘制图形。 event 可以查看移动, flag 查看是否按下elif event==cv2.EVENT_MOUSEMOVE and flags==cv2.EVENT_FLAG_LBUTTON:if drawing==True:cv2.rectangle(image,(ix,iy),(x,y),(0,255,0),-1)ox,oy = x,yelif event==cv2.EVENT_LBUTTONUP:drawing==Falsenumber = 0
jpg = ".jpg"
Image_Path = "./images"
f_wrect = open('images.txt','a')
for file in os.listdir(Image_Path):number = number + 1#print(number)string_number = '%d'%number#print(string_number)i = len(string_number)#print(i)while (5 - i) >  0:string_number = '0' + string_numberi = i + 1newname = string_number + jpgold_NamePath = os.path.join(Image_Path,file)new_NamePath = os.path.join(Image_Path,newname)os.rename(old_NamePath,new_NamePath)image = cv2.imread(new_NamePath)cv2.namedWindow('image')cv2.setMouseCallback('image',draw_circle)while(1):cv2.imshow('image',image)#运行代码,会显示一张图片,当按下q键时,显示图片的窗口被关掉,结束程序。if (cv2.waitKey(1)&0xFF==ord('q')):print('ok')image_rect = newname + ' ceramic '+ '%d'% ix +' '+ '%d'% iy+ ' ' + '%d'% ox + ' ' + '%d'% oy + '\n'f_wrect.write(image_rect)breakcv2.destroyWindow('image')

参考博客:http://www.cnblogs.com/YangQiaoblog/p/6782183.html

未完待续。。。。。。。。。。


一些不懂的细碎的知识点,可以参考下列博客:

  • LRN层作用:http://blog.csdn.net/u014114990/article/details/47662189
  • POI Pooling层:http://blog.csdn.net/lanran2/article/details/60143861
  • SmoothL1Loss层:http://blog.csdn.net/xyy19920105/article/details/50421225
  • numpy.where():http://blog.csdn.net/lanchunhui/article/details/49489205
    np.where()[0] 表示行的索引,np.where()[1] 则表示列的索引
  • numpy.hstack()函数:http://blog.csdn.net/garfielder007/article/details/51378296
    Stack arrays in sequence horizontally (column wise).以列为主,水平方向上合并数组。
    程序实例:
    >>> a = np.array((1,2,3))  >>> b = np.array((2,3,4))  >>> np.hstack((a,b))  array([1, 2, 3, 2, 3, 4])  >>> a = np.array([[1],[2],[3]])  >>> b = np.array([[2],[3],[4]])  >>> np.hstack((a,b))  array([[1, 2],  [2, 3],  [3, 4]])  
  • numpy.random.permulation(arrays):返回矩阵洗牌后的副本,意味着原矩阵不变
  • numpy.random.shuffle(arrays):对原数据进行洗牌,却不返回任何值。
import numpy as np
arrays=np.array([1,2,3,4])
print np.random.permulation(arrays)
print arrays
print np.random.shuffle(arrays)
print arrays结果:
[4 2 3 1]
[1 2 3 4]#始终不变
None
[1 4 2 3]
  • np.reshape(arrays,(-1,2)):将数组arrays重新排列成列数为2的。不管-1在第几个参数的位置,重新排列时均以行为主
[python]代码示例:
arrays=np.array([1,2,3,4])
print np.reshape(arrays,(-1,2))
print np.reshape(arrays,(-1,4))
print np.reshape(arrays,(2,-1))
print np.reshape(arrays,(4,-1))结果:
[[1,2],[3,4]]
[[1,2,3,4]]
[[1,2],[3,4]]
[[1],[2],[3],[4]]

这篇关于caffe - faster r-cnn(python)之路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068089

相关文章

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息