caffe - faster r-cnn(python)之路

2024-06-17 01:18
文章标签 python cnn caffe faster

本文主要是介绍caffe - faster r-cnn(python)之路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. faster-rcnn安装与运行
  下列faster-rcnn的安装参考github作者给出的教程:https://github.com/rbgirshick/py-faster-rcnn

  • caffe的安装参考官网教程( see:Caffe installation instructions)
    note:将makefile.config中这两行注释去掉
WITH_PYTHON_LAYER := 1
USE_CUDNN := 1
  • 将Faster R-CNN下载到本地
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
  • 假设下载下来存放的路径根目录为:FRCN_ROOT
  • 编译Cython模块
cd $FRCN_ROOT/lib
make
  • 编译caffe和pycaffe
cd $FRCN_ROOT/caffe-fast-rcnn
make -j8 && make pycaffe
  • 下载pre-computed Faster R-CNN detectors
cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh

安装成功之后,运行demo.py测试下,可以试下自己的图片:

cd $FRCN_ROOT
./tools/demo.py

更多参考官方教程:https://github.com/rbgirshick/py-faster-rcnn


2. 文件夹导读

  • caffe-fast-rcnn:caffe框架目录
  • data:用来存放pretrained模型以及读取文件的cache缓存,还有一些下载模型的脚本
  • experiments:存放配置文件以及运行的log文件,另外这个目录下有scripts,里面存放end2end和alt_opt两种训练方式的脚本
  • lib:用来存放一些python接口文件,如其下的datasets主要负责数据库读取,config负责一些训练的配置选项
  • models:里面存放了三个模型文件,小型网络ZF,中型网络VGG_CNN_M_1024以及大型网络VGG16,根据你的硬件条件来选择使用哪种网络,ZF和VGG_CNN_M_1024需要至少3G内存,VGG16需要更多的内存,但不会超过11G
  • output:这里存放的是训练完成后的输出目录,这是运行了训练后才会出现的目录
  • tools:里面存放的是训练和测试的Python文件

    3. 制作数据集
      3.1.用标注工具labelImg

安装:sudo pip install labelImg 
运行:labelImg

  这里写图片描述
  可以open一张,也可以open dir导入一个文件。利用Create RectBox圈出目标区域,之后对区域进行类别标注。然后利用next image或者prev Image切换下一张或者前一张。标记错的可以直接点击后delete,….很简单,不再详细介绍。
  标注之后保存后的形式和VOC中的Annotations文件夹中的格式一样。
  

<annotation verified="no"><folder>images</folder><filename>00002</filename><path>/home/apple/work/py-faster-rcnn/images/00002.jpg</path><source><database>Unknown</database></source><size><width>500</width><height>375</height><depth>3</depth></size><segmented>0</segmented><object><name>dog</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>2</xmin><ymin>2</ymin><xmax>264</xmax><ymax>372</ymax></bndbox></object><object><name>cat</name><pose>Unspecified</pose><truncated>1</truncated><difficult>0</difficult><bndbox><xmin>276</xmin><ymin>82</ymin><xmax>499</xmax><ymax>375</ymax></bndbox></object>
</annotation>

  参考博客:http://blog.csdn.net/jesse_mx/article/details/53606897      https://bealin.github.io/2016/10/23/Caffe%E5%AD%A6%E4%B9%A0%E7%B3%BB%E5%88%97%E2%80%94%E2%80%946%E4%BD%BF%E7%94%A8Faster-RCNN%E8%BF%9B%E8%A1%8C%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B/

 2.2.使用自己的程序进行标记

  目标:对图像中目标标注bounding box,标签以下列形式展现:
  图片名 目标类别 起始点x坐标 y坐标 结束点x坐标 y坐标

00001.jpg car 63 96 180 341
00002.jpg car 85 39 436 330
00003.jpg car 40 43 255 346
00004.jpg car 78 22 433 360
00005.jpg car 147 74 414 370

实现代码

# -*- coding: utf-8 -*-
import os
import cv2
import numpy as np# 当鼠标按下时变为 True
drawing = False
ix,iy = -1,-1
ox,oy = -1,-1
# 创建回调函数
def draw_circle(event,x,y,flags,param):global ix,iy,ox,oy,drawing# 当按下左键是返回起始位置坐标if event==cv2.EVENT_LBUTTONDOWN:drawing=Trueix,iy = x,y# 当鼠标左键按下并移动是绘制图形。 event 可以查看移动, flag 查看是否按下elif event==cv2.EVENT_MOUSEMOVE and flags==cv2.EVENT_FLAG_LBUTTON:if drawing==True:cv2.rectangle(image,(ix,iy),(x,y),(0,255,0),-1)ox,oy = x,yelif event==cv2.EVENT_LBUTTONUP:drawing==Falsenumber = 0
jpg = ".jpg"
Image_Path = "./images"
f_wrect = open('images.txt','a')
for file in os.listdir(Image_Path):number = number + 1#print(number)string_number = '%d'%number#print(string_number)i = len(string_number)#print(i)while (5 - i) >  0:string_number = '0' + string_numberi = i + 1newname = string_number + jpgold_NamePath = os.path.join(Image_Path,file)new_NamePath = os.path.join(Image_Path,newname)os.rename(old_NamePath,new_NamePath)image = cv2.imread(new_NamePath)cv2.namedWindow('image')cv2.setMouseCallback('image',draw_circle)while(1):cv2.imshow('image',image)#运行代码,会显示一张图片,当按下q键时,显示图片的窗口被关掉,结束程序。if (cv2.waitKey(1)&0xFF==ord('q')):print('ok')image_rect = newname + ' ceramic '+ '%d'% ix +' '+ '%d'% iy+ ' ' + '%d'% ox + ' ' + '%d'% oy + '\n'f_wrect.write(image_rect)breakcv2.destroyWindow('image')

参考博客:http://www.cnblogs.com/YangQiaoblog/p/6782183.html

未完待续。。。。。。。。。。


一些不懂的细碎的知识点,可以参考下列博客:

  • LRN层作用:http://blog.csdn.net/u014114990/article/details/47662189
  • POI Pooling层:http://blog.csdn.net/lanran2/article/details/60143861
  • SmoothL1Loss层:http://blog.csdn.net/xyy19920105/article/details/50421225
  • numpy.where():http://blog.csdn.net/lanchunhui/article/details/49489205
    np.where()[0] 表示行的索引,np.where()[1] 则表示列的索引
  • numpy.hstack()函数:http://blog.csdn.net/garfielder007/article/details/51378296
    Stack arrays in sequence horizontally (column wise).以列为主,水平方向上合并数组。
    程序实例:
    >>> a = np.array((1,2,3))  >>> b = np.array((2,3,4))  >>> np.hstack((a,b))  array([1, 2, 3, 2, 3, 4])  >>> a = np.array([[1],[2],[3]])  >>> b = np.array([[2],[3],[4]])  >>> np.hstack((a,b))  array([[1, 2],  [2, 3],  [3, 4]])  
  • numpy.random.permulation(arrays):返回矩阵洗牌后的副本,意味着原矩阵不变
  • numpy.random.shuffle(arrays):对原数据进行洗牌,却不返回任何值。
import numpy as np
arrays=np.array([1,2,3,4])
print np.random.permulation(arrays)
print arrays
print np.random.shuffle(arrays)
print arrays结果:
[4 2 3 1]
[1 2 3 4]#始终不变
None
[1 4 2 3]
  • np.reshape(arrays,(-1,2)):将数组arrays重新排列成列数为2的。不管-1在第几个参数的位置,重新排列时均以行为主
[python]代码示例:
arrays=np.array([1,2,3,4])
print np.reshape(arrays,(-1,2))
print np.reshape(arrays,(-1,4))
print np.reshape(arrays,(2,-1))
print np.reshape(arrays,(4,-1))结果:
[[1,2],[3,4]]
[[1,2,3,4]]
[[1,2],[3,4]]
[[1],[2],[3],[4]]

这篇关于caffe - faster r-cnn(python)之路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068089

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e