DenseNet完成Cifer10任务的效果验证

2024-06-17 00:44

本文主要是介绍DenseNet完成Cifer10任务的效果验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文章是针对论文《2017-CVPR-DenseNet-Densely-Connected Convolutional Networks》中实验的复现,使用了几乎相同的超参数

目录

一、论文中的实验

1.准确率

2.参数效率

3.不同网络结构之间的比较

二、超参数:

三、复现的实验结果:

1.DenseNet201 epoch=40:

2.DenseNet121 epoch=40:

3.ResNet18 epoch=40:

三、结论

1.准确率

2.参数效率


一、论文中的实验

        在源论文中,作者使用CIFAR10,CIFAR100和SVHN三个数据集上使用了一些包括DenseNet-BC(以下统称DenseNet)和ReNet的网络进行测试,最终的错误率如下:

1.准确率

        在没有数据增强的情况下,DenseNet的准确率显著超过了其他网络,在有数据增强的情况下,也有微弱优势

2.参数效率

        在参数数量相等的情况下,DenseNet优更低的错误率,在达到相同错误率时,DenseNEt只用了1/3的参数

3.运算复杂度

要达到同样的错误率,DenseNet进行的浮点运算次数更少

4.不同网络结构之间的比较

网络层数越多,错误率越低

二、超参数:

#使用镜像加裁剪的数据增强,以及使用通道均值和标准差对数据进行归一化
transform_train = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomCrop(32, padding=4),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])#使用通道均值和标准差对数据进行归一化
transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
#载入训练集50000张图片,batchsize=64
trainset = tv.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform_train)
trainloader = t.utils.data.DataLoader(trainset, batch_size=64,shuffle=True, num_workers=0)
#载入测试集10000张图片
testset = tv.datasets.CIFAR10(root='./data', train=False,                                 download=True, transform=transform_test)
testloader = t.utils.data.DataLoader(testset, batch_size=64,shuffle=False, num_workers=0)
#使用GPU训练
MyDevice = t.device("cuda:0" if t.cuda.is_available() else "cpu")
# 权重初始化(本论文中直接引用的另一篇论文的权重初始化,这里也是直接拿过来用)
def weights_init(m):classname = m.__class__.__name__if classname.find('Conv') != -1:nn.init.kaiming_normal_(m.weight)elif classname.find('BatchNorm') != -1:nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)net.apply(weights_init)
net=net.to(MyDevice)
#交叉熵损失函数
criterion = nn.CrossEntropyLoss()
#使用SGD优化,初始学习率为0.1,使用权重衰减为0.0001和0.9的Nesterov动量
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
#在训练周期为总周期的50%和75%时,学习率降低10倍
scheduler = MultiStepLR(optimizer, milestones=[20,30], gamma=0.1)

三、复现的实验结果:

论文中给出了DenseNet的四中结构,我们首先分别使用121和201使用同样的超参数进行了测试:

1.DenseNet201 epoch=40:

#直接使用pytorch提供的网络
net = models.densenet121(pretrained=False,num_classes=10).to(MyDevice)

2.DenseNet121 epoch=40:

#直接使用pytorch提供的网络
net = models.densenet121(pretrained=False,num_classes=10).to(MyDevice)

可以很明显的看出201相比121的优势很明显

对于ResNet,我们同样使用了最简单ResNet18和较复杂的ResNet101:

3.ResNet18 epoch=40:

net = models.resnet18(pretrained=False,num_classes=10).to(MyDevice)

4.ResNet101 epoch=40:

net = models.resnet101(pretrained=False,num_classes=10).to(MyDevice)

准确率极低,可能是过拟合导致的

三、结论

1.准确率

        复现的实验准确率与论文中的实验准确率存在差距,原因可能是仍有部分超参数不同,论文中有一些超参数时直接引用的其他论文,没有给出具体参数,比如“We adopt a standard data aug-mentation scheme (mirroring/shifting) that is widely used for these two datasets[1113172228203234]”,我们没有时间和能力去读额外的论文,所以采用了便于实现的镜像+裁剪来进行数据增强。在权重初始化和定义优化函数时也遇到了类似的问题,所以实验并不是100%复现

        在复现的实现中,ResNet18和DenseNet201的准确率几乎一样,与论文中使用数据增强时的结果类似

2.参数效率

DenseNet的参数效率确实比DenseNet,可以从运行时的程序内存占用大概看出来(PythonApplication9在运行ResNet18,PythonApplication8在运行DenseNet201)

3.过拟合

从上面ResNet101的结果可以看出,在使用相同超参数的情况下,ResNet很早就出现了损失下降二准确率没有提高的过拟合迹象,即使学习率改变也没有改善,而DenseNet没有出现这种情况

4.运算复杂度

在进行epoch=300的复现实验时,两个网络是同时开始在同一设备上运行的,在任意相同时刻时,DenseNet达到的准确率都要更高,可以印证论文中的说法,但是在同epoch的情况下,DenseNet还是要慢的多的

如图:左边是DenseNet201,右边是ResNet8

这篇关于DenseNet完成Cifer10任务的效果验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068016

相关文章

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左