文章MSM_metagenomics(五):共现分析

2024-06-16 23:44

本文主要是介绍文章MSM_metagenomics(五):共现分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

介绍

本教程是使用一个Python脚本来分析多种微生物(即strains, species, genus等)的共现模式。

数据

大家通过以下链接下载数据:

  • 百度网盘链接:https://pan.baidu.com/s/1f1SyyvRfpNVO3sLYEblz1A
  • 提取码: 请关注WX公zhong号_生信学习者_后台发送 复现msm 获取提取码

Python packages required

  • pandas >= 1.3.5
  • matplotlib >= 3.5.0
  • seaborn >= 0.11.2

Co-presence pattern analysis

使用step_curve_drawer.py 做共线性分析

  • 代码
#!/usr/bin/env python"""
NAME: step_curve_drawer.py
DESCRIPTION: This script is to analyze the co-prsense of multiple species in different categories,by drawing step curves.
"""import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sys
import argparse
import textwrapdef read_args(args):# This function is to parse argumentsparser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,description = textwrap.dedent('''\This program is to do draw step curves to analyze co-presense of multiple species in different groups.'''),epilog = textwrap.dedent('''\examples:step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>'''))parser.add_argument('--abundance_table',nargs = '?',help = 'Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.',type = str,default = None)parser.add_argument('--variable',nargs = '?',help = 'Specify the header of the variable in the metadata table you want to assess. For example, \[Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].',type = str,default = None)parser.add_argument('--minimum_abundance',nargs = '?',help = 'Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default',type = float,default = 0.0)parser.add_argument('--species_number',nargs = '?',help = 'Specify the total number of multiple species in the analysis.',type = int)parser.add_argument('--output',nargs = '?',help = 'Specify the output figure name.',type = str,default = None)parser.add_argument('--palette',nargs = '?',help = 'Input a tab-delimited mapping file where values are group names and keys are color codes.',type = str,default = None)return vars(parser.parse_args())class PandasDealer:"""This is an object for dealing pandas dataframe."""def __init__(self, df_):self.df_ = df_def read_csv(self):# Ths fucntion will read tab-delimitted file into a pandas dataframe.return pd.read_csv(self.df_, sep = '\t', index_col = False, low_memory=False)def rotate_df(self):# this function is to rotate the metaphlan-style table into tidy dataframe to ease searching work,df_ = self.read_csv()df_rows_lists = df_.values.tolist()rotated_df_dict = {df_.columns[0]: df_.columns[1:]}for i in df_rows_lists:rotated_df_dict[i[0]] = i[1:]rotated_df = pd.DataFrame.from_dict(rotated_df_dict)return rotated_dfclass CopEstimator:def __init__(self, sub_df_md):self.sub_df_md = sub_df_md # sub_df_md: a subset of dataframe which contains only a group of species one wants to do co-presence analysis.def make_copresense_df(self, factor, total_species_nr, threshold = 0.0):# factor: the factor you want to assess the category percentage.# total_species_nr: specify the total number of species you want to do co-presense analysis.rotated_df = PandasDealer(self.sub_df_md)rotated_df = rotated_df.rotate_df()cols = rotated_df.columns[-total_species_nr: ].to_list() categories = list(set(rotated_df[factor].to_list()))copresense = []cate_name = []ratios = []for c in categories:sub_df = rotated_df[rotated_df[factor] == c]species_group_df = sub_df[cols]species_group_df = species_group_df.apply(pd.to_numeric)species_group_df['total'] = species_group_df[cols].gt(threshold).sum(axis=1)for i in range(1, total_species_nr + 1):ratio = count_non_zero_rows(species_group_df, i)copresense.append(i)cate_name.append(c)ratios.append(ratio)return pd.DataFrame.from_dict({"copresense": copresense,factor: cate_name,"percentage": ratios})def count_non_zero_rows(df_, nr):total_rows = len(df_.index)sub_df = df_[df_['total'] >= nr]ratio = len(sub_df.index)/total_rowsreturn ratioclass VisualTools:def __init__(self, processed_df, factor):self.processed_df = processed_dfself.factor = factordef step_curves(self, opt_name, palette = None):categories = list(set(self.processed_df[self.factor].to_list()))if palette:palette_dict = {i.rstrip().split('\t')[0]: i.rstrip().split('\t')[1] for i in open(palette).readlines()}for c in categories:sub_df = self.processed_df[self.processed_df[self.factor] == c]plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c, color = palette_dict[c])else:for c in categories:sub_df = self.processed_df[self.processed_df[self.factor] == c]plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c)plt.title("Number of species in an individual if present")plt.xlabel("Percentage")plt.ylabel("Co-presense")plt.legend(title = self.factor)plt.savefig(opt_name, bbox_inches = "tight")if __name__ == "__main__":pars = read_args(sys.argv)cop_obj = CopEstimator(pars['abundance_table'])p_df = cop_obj.make_copresense_df(pars['variable'], pars['species_number'], pars['minimum_abundance'])vis_obj = VisualTools(p_df, pars['variable'])vis_obj.step_curves(pars['output'], palette = pars['palette'])
  • 用法
usage: step_curve_drawer.py [-h] [--abundance_table [ABUNDANCE_TABLE]] [--variable [VARIABLE]] [--minimum_abundance [MINIMUM_ABUNDANCE]] [--species_number [SPECIES_NUMBER]] [--output [OUTPUT]][--palette [PALETTE]]This program is to do draw step curves to analyze co-presense of multiple species in different groups.optional arguments:-h, --help            show this help message and exit--abundance_table [ABUNDANCE_TABLE]Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.--variable [VARIABLE]Specify the header of the variable in the metadata table you want to assess. For example, [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].--minimum_abundance [MINIMUM_ABUNDANCE]Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default--species_number [SPECIES_NUMBER]Specify the total number of multiple species in the analysis.--output [OUTPUT]     Specify the output figure name.--palette [PALETTE]   Input a tab-delimited mapping file where values are group names and keys are color codes.examples:python step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>

为了演示step_curve_drawer.py的使用,我们将绘制基于metaphlan相对丰度表特定于Segatalla copri(之前称为Prevotella copri)的八个谱系:./data/mpa4_pcopri_abundances_md.tsv的共现模式,这些数据来自MSMNon-MSM人群。MSMNon-MSM样本将使用自定义颜色进行标记,颜色分配来自一个颜色映射文件color map file: ./data/copresence_color_map.tsv

python step_curve_drawer.py \--abundance_table mpa_pcopri_abundances_md.tsv \--variable sexual_orientation \--species_number 8 \--palette copresence_color_map.tsv \--output copresence_plot.png

请添加图片描述

这篇关于文章MSM_metagenomics(五):共现分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067885

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

一篇文章让你彻底搞懂Java中VO、DTO、BO、DO、PO

《一篇文章让你彻底搞懂Java中VO、DTO、BO、DO、PO》在java编程中我们常常需要做数据交换,那么在数据交换过程中就需要使用到实体对象,这就不可避免的使用到vo、dto、po等实体对象,这篇... 目录深入浅出讲解各层对象区别+实战应用+代码对比,告别概念混淆,设计出更优雅的系统架构!一、 为什么

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT