基于STM32和人工智能的自动驾驶小车系统

2024-06-16 22:28

本文主要是介绍基于STM32和人工智能的自动驾驶小车系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  1. 引言
  2. 环境准备
  3. 自动驾驶小车系统基础
  4. 代码实现:实现自动驾驶小车系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:自动驾驶应用与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着人工智能和嵌入式系统技术的发展,自动驾驶技术在交通、物流等领域得到了广泛应用。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个自动驾驶小车系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 超声波传感器:用于距离测量和避障
  • 红外传感器:用于线路跟踪
  • 摄像头模块:用于图像识别
  • 电机驱动模块:如L298N,用于控制电机
  • 直流电机:用于驱动小车
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于图像识别和路径规划

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 自动驾驶小车系统基础

控制系统架构

自动驾驶小车系统由以下部分组成:

  • 数据采集模块:用于采集环境数据(距离、图像、线路等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和路径规划
  • 控制系统:根据分析结果控制电机驱动小车
  • 显示系统:用于显示小车状态和路径信息
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过超声波传感器、红外传感器和摄像头采集环境数据,并使用人工智能算法进行分析和路径规划,控制电机驱动小车自动行驶和避障。用户可以通过按键或旋钮进行设置,并通过显示屏查看小车状态和路径信息。

4. 代码实现:实现自动驾驶小车系统

4.1 数据采集模块

配置超声波传感器
使用STM32CubeMX配置GPIO和TIM接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO和TIM引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define TRIG_PIN GPIO_PIN_0
#define ECHO_PIN GPIO_PIN_1
#define GPIO_PORT GPIOATIM_HandleTypeDef htim2;void GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = TRIG_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);GPIO_InitStruct.Pin = ECHO_PIN;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void TIM_Init(void) {__HAL_RCC_TIM2_CLK_ENABLE();TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};htim2.Instance = TIM2;htim2.Init.Prescaler = 84 - 1;htim2.Init.CounterMode = TIM_COUNTERMODE_UP;htim2.Init.Period = 0xFFFF;htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;HAL_TIM_Base_Init(&htim2);sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);HAL_TIM_Base_Start(&htim2);
}uint32_t Read_Ultrasonic_Distance(void) {uint32_t local_time = 0;HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_SET);HAL_Delay(10);HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_RESET);while (!(HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)));while (HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)) {local_time++;HAL_Delay(1);}return local_time;
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();TIM_Init();uint32_t distance;while (1) {distance = Read_Ultrasonic_Distance();HAL_Delay(100

配置红外传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define IR_SENSOR_PIN GPIO_PIN_2
#define GPIO_PORT GPIOAvoid GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = IR_SENSOR_PIN;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}uint8_t Read_IR_Sensor(void) {return HAL_GPIO_ReadPin(GPIO_PORT, IR_SENSOR_PIN);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();uint8_t ir_state;while (1) {ir_state = Read_IR_Sensor();HAL_Delay(1000);}
}

配置摄像头模块
使用STM32CubeMX配置SPI或I2C接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI或I2C引脚,设置为相应的通信模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "camera.h"void Camera_Init(void) {// 初始化摄像头模块
}void Camera_Capture_Image(uint8_t* image_buffer) {// 捕获图像数据
}int main(void) {HAL_Init();SystemClock_Config();Camera_Init();uint8_t image_buffer[IMAGE_SIZE];while (1) {Camera_Capture_Image(image_buffer);HAL_Delay(5000);  // 每5秒捕获一次图像}
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据namespace {tflite::MicroErrorReporter micro_error_reporter;tflite::MicroInterpreter* interpreter = nullptr;TfLiteTensor* input = nullptr;TfLiteTensor* output = nullptr;constexpr int kTensorArenaSize = 2 * 1024;uint8_t tensor_arena[kTensorArenaSize];
}void AI_Init(void) {tflite::InitializeTarget();static tflite::MicroMutableOpResolver<10> micro_op_resolver;micro_op_resolver.AddFullyConnected();micro_op_resolver.AddSoftmax();const tflite::Model* model = tflite::GetModel(model_data);if (model->version() !=if (model->version() != TFLITE_SCHEMA_VERSION) {TF_LITE_REPORT_ERROR(&micro_error_reporter,"Model provided is schema version %d not equal ""to supported version %d.",model->version(), TFLITE_SCHEMA_VERSION);return;}static tflite::MicroInterpreter static_interpreter(model, micro_op_resolver, tensor_arena, kTensorArenaSize,&micro_error_reporter);interpreter = &static_interpreter;interpreter->AllocateTensors();input = interpreter->input(0);output = interpreter->output(0);
}void AI_Run_Inference(uint8_t* image_data, float* output_data) {// 拷贝输入数据到模型输入张量for (int i = 0; i < input->dims->data[1]; ++i) {input->data.uint8[i] = image_data[i];}// 运行模型推理if (interpreter->Invoke() != kTfLiteOk) {TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");return;}// 拷贝输出数据for (int i = 0; i < output->dims->data[1]; ++i) {output_data[i] = output->data.f[i];}
}int main(void) {HAL_Init();SystemClock_Config();AI_Init();Camera_Init();uint8_t image_buffer[IMAGE_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 捕获图像数据Camera_Capture_Image(image_buffer);// 运行AI推理AI_Run_Inference(image_buffer, output_data);// 根据模型输出数据执行相应的操作HAL_Delay(1000);}
}

4.3 控制系统

配置GPIO控制电机驱动模块
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define MOTOR_LEFT_PIN GPIO_PIN_0
#define MOTOR_RIGHT_PIN GPIO_PIN_1
#define GPIO_PORT GPIOBvoid GPIO_Init(void) {__HAL_RCC_GPIOB_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = MOTOR_LEFT_PIN | MOTOR_RIGHT_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void Control_Motor(uint8_t left_state, uint8_t right_state) {HAL_GPIO_WritePin(GPIO_PORT, MOTOR_LEFT_PIN, left_state ? GPIO_PIN_SET : GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIO_PORT, MOTOR_RIGHT_PIN, right_state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();uint8_t left_motor_state;uint8_t right_motor_state;uint8_t image_buffer[IMAGE_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 捕获图像数据Camera_Capture_Image(image_buffer);// 运行AI推理AI_Run_Inference(image_buffer, output_data);// 根据AI输出控制电机left_motor_state = output_data[0] > 0.5;right_motor_state = output_data[1] > 0.5;Control_Motor(left_motor_state, right_motor_state);HAL_Delay(100);}
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏
使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"void Display_Init(void) {LCD_TFT_Init();
}void Display_Car_Data(float* output_data) {char buffer[32];sprintf(buffer, "Left Motor: %s", output_data[0] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);sprintf(buffer, "Right Motor: %s", output_data[1] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();Display_Init();uint8_t image_buffer[IMAGE_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 捕获图像数据并填充 input_data 数组Camera_Capture_Image(image_buffer);// 运行AI推理AI_Run_Inference(image_buffer, output_data);// 显示小车状态数据和AI结果Display_Car_Data(output_data);// 根据AI结果控制电机uint8_t left_motor_state = output_data[0] > 0.5;uint8_t right_motor_state = output_data[1] > 0.5;Control_Motor(left_motor_state, right_motor_state);HAL_Delay(100);}
}

5. 应用场景:自动驾驶应用与优化

智能物流

自动驾驶小车可以应用于物流领域,通过智能路径规划和避障技术,提高物流运输效率和安全性。

智能农业

在农业领域,自动驾驶小车可以用于农作物的种植和管理,自动化执行各种农务操作,提升农业生产力。

智能巡检

自动驾驶小车可以用于工业和基础设施的巡检,通过实时监控和数据分析,及时发现和处理问题。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行环境预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的自动驾驶管理。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能自动驾驶小车,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的自动驾驶小车系统。在实际应用中,还可以根据具体需求进行优化和扩展,提升系统的性能和可靠性。

这篇关于基于STM32和人工智能的自动驾驶小车系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067724

相关文章

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

Oracle数据库在windows系统上重启步骤

《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过