基于STM32和人工智能的自动驾驶小车系统

2024-06-16 22:28

本文主要是介绍基于STM32和人工智能的自动驾驶小车系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  1. 引言
  2. 环境准备
  3. 自动驾驶小车系统基础
  4. 代码实现:实现自动驾驶小车系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:自动驾驶应用与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着人工智能和嵌入式系统技术的发展,自动驾驶技术在交通、物流等领域得到了广泛应用。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个自动驾驶小车系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 超声波传感器:用于距离测量和避障
  • 红外传感器:用于线路跟踪
  • 摄像头模块:用于图像识别
  • 电机驱动模块:如L298N,用于控制电机
  • 直流电机:用于驱动小车
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于图像识别和路径规划

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 自动驾驶小车系统基础

控制系统架构

自动驾驶小车系统由以下部分组成:

  • 数据采集模块:用于采集环境数据(距离、图像、线路等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和路径规划
  • 控制系统:根据分析结果控制电机驱动小车
  • 显示系统:用于显示小车状态和路径信息
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过超声波传感器、红外传感器和摄像头采集环境数据,并使用人工智能算法进行分析和路径规划,控制电机驱动小车自动行驶和避障。用户可以通过按键或旋钮进行设置,并通过显示屏查看小车状态和路径信息。

4. 代码实现:实现自动驾驶小车系统

4.1 数据采集模块

配置超声波传感器
使用STM32CubeMX配置GPIO和TIM接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO和TIM引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define TRIG_PIN GPIO_PIN_0
#define ECHO_PIN GPIO_PIN_1
#define GPIO_PORT GPIOATIM_HandleTypeDef htim2;void GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = TRIG_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);GPIO_InitStruct.Pin = ECHO_PIN;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void TIM_Init(void) {__HAL_RCC_TIM2_CLK_ENABLE();TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};htim2.Instance = TIM2;htim2.Init.Prescaler = 84 - 1;htim2.Init.CounterMode = TIM_COUNTERMODE_UP;htim2.Init.Period = 0xFFFF;htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;HAL_TIM_Base_Init(&htim2);sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);HAL_TIM_Base_Start(&htim2);
}uint32_t Read_Ultrasonic_Distance(void) {uint32_t local_time = 0;HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_SET);HAL_Delay(10);HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_RESET);while (!(HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)));while (HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)) {local_time++;HAL_Delay(1);}return local_time;
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();TIM_Init();uint32_t distance;while (1) {distance = Read_Ultrasonic_Distance();HAL_Delay(100

配置红外传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define IR_SENSOR_PIN GPIO_PIN_2
#define GPIO_PORT GPIOAvoid GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = IR_SENSOR_PIN;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}uint8_t Read_IR_Sensor(void) {return HAL_GPIO_ReadPin(GPIO_PORT, IR_SENSOR_PIN);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();uint8_t ir_state;while (1) {ir_state = Read_IR_Sensor();HAL_Delay(1000);}
}

配置摄像头模块
使用STM32CubeMX配置SPI或I2C接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI或I2C引脚,设置为相应的通信模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "camera.h"void Camera_Init(void) {// 初始化摄像头模块
}void Camera_Capture_Image(uint8_t* image_buffer) {// 捕获图像数据
}int main(void) {HAL_Init();SystemClock_Config();Camera_Init();uint8_t image_buffer[IMAGE_SIZE];while (1) {Camera_Capture_Image(image_buffer);HAL_Delay(5000);  // 每5秒捕获一次图像}
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据namespace {tflite::MicroErrorReporter micro_error_reporter;tflite::MicroInterpreter* interpreter = nullptr;TfLiteTensor* input = nullptr;TfLiteTensor* output = nullptr;constexpr int kTensorArenaSize = 2 * 1024;uint8_t tensor_arena[kTensorArenaSize];
}void AI_Init(void) {tflite::InitializeTarget();static tflite::MicroMutableOpResolver<10> micro_op_resolver;micro_op_resolver.AddFullyConnected();micro_op_resolver.AddSoftmax();const tflite::Model* model = tflite::GetModel(model_data);if (model->version() !=if (model->version() != TFLITE_SCHEMA_VERSION) {TF_LITE_REPORT_ERROR(&micro_error_reporter,"Model provided is schema version %d not equal ""to supported version %d.",model->version(), TFLITE_SCHEMA_VERSION);return;}static tflite::MicroInterpreter static_interpreter(model, micro_op_resolver, tensor_arena, kTensorArenaSize,&micro_error_reporter);interpreter = &static_interpreter;interpreter->AllocateTensors();input = interpreter->input(0);output = interpreter->output(0);
}void AI_Run_Inference(uint8_t* image_data, float* output_data) {// 拷贝输入数据到模型输入张量for (int i = 0; i < input->dims->data[1]; ++i) {input->data.uint8[i] = image_data[i];}// 运行模型推理if (interpreter->Invoke() != kTfLiteOk) {TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");return;}// 拷贝输出数据for (int i = 0; i < output->dims->data[1]; ++i) {output_data[i] = output->data.f[i];}
}int main(void) {HAL_Init();SystemClock_Config();AI_Init();Camera_Init();uint8_t image_buffer[IMAGE_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 捕获图像数据Camera_Capture_Image(image_buffer);// 运行AI推理AI_Run_Inference(image_buffer, output_data);// 根据模型输出数据执行相应的操作HAL_Delay(1000);}
}

4.3 控制系统

配置GPIO控制电机驱动模块
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define MOTOR_LEFT_PIN GPIO_PIN_0
#define MOTOR_RIGHT_PIN GPIO_PIN_1
#define GPIO_PORT GPIOBvoid GPIO_Init(void) {__HAL_RCC_GPIOB_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = MOTOR_LEFT_PIN | MOTOR_RIGHT_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void Control_Motor(uint8_t left_state, uint8_t right_state) {HAL_GPIO_WritePin(GPIO_PORT, MOTOR_LEFT_PIN, left_state ? GPIO_PIN_SET : GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIO_PORT, MOTOR_RIGHT_PIN, right_state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();uint8_t left_motor_state;uint8_t right_motor_state;uint8_t image_buffer[IMAGE_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 捕获图像数据Camera_Capture_Image(image_buffer);// 运行AI推理AI_Run_Inference(image_buffer, output_data);// 根据AI输出控制电机left_motor_state = output_data[0] > 0.5;right_motor_state = output_data[1] > 0.5;Control_Motor(left_motor_state, right_motor_state);HAL_Delay(100);}
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏
使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"void Display_Init(void) {LCD_TFT_Init();
}void Display_Car_Data(float* output_data) {char buffer[32];sprintf(buffer, "Left Motor: %s", output_data[0] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);sprintf(buffer, "Right Motor: %s", output_data[1] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();Display_Init();uint8_t image_buffer[IMAGE_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 捕获图像数据并填充 input_data 数组Camera_Capture_Image(image_buffer);// 运行AI推理AI_Run_Inference(image_buffer, output_data);// 显示小车状态数据和AI结果Display_Car_Data(output_data);// 根据AI结果控制电机uint8_t left_motor_state = output_data[0] > 0.5;uint8_t right_motor_state = output_data[1] > 0.5;Control_Motor(left_motor_state, right_motor_state);HAL_Delay(100);}
}

5. 应用场景:自动驾驶应用与优化

智能物流

自动驾驶小车可以应用于物流领域,通过智能路径规划和避障技术,提高物流运输效率和安全性。

智能农业

在农业领域,自动驾驶小车可以用于农作物的种植和管理,自动化执行各种农务操作,提升农业生产力。

智能巡检

自动驾驶小车可以用于工业和基础设施的巡检,通过实时监控和数据分析,及时发现和处理问题。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行环境预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的自动驾驶管理。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能自动驾驶小车,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的自动驾驶小车系统。在实际应用中,还可以根据具体需求进行优化和扩展,提升系统的性能和可靠性。

这篇关于基于STM32和人工智能的自动驾驶小车系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067724

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp