【自动驾驶/opencv】32.交通灯颜色提取的难点

2024-06-16 21:08

本文主要是介绍【自动驾驶/opencv】32.交通灯颜色提取的难点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交通灯颜色识别有难点,因为很多时候,颜色会因为环境而变化,例如下面的红灯,下图不用理会右边的交通灯,因为我调试程序中是限定了id==8641只分析左边这个,所以右边这个没进行处理。

在这里插入图片描述
上图左边是向左的箭头灯,右边是向右的箭头。但是使用颜色空间进行提取颜色时,这箭头很亮的部分,其实已经接近白色了,所以就提取不到红色了。

这张图是截取亮灯中心带一点周边的图像:
在这里插入图片描述
下面这张图是截取亮灯中心的图像:【注意,这里我已经附图了,因为很接近白色,所以人眼不太能看出来,你可以把鼠标移动到下面中心位置的部分,就会出现一个放大镜的+,这就是图片】
在这里插入图片描述
我们人眼之所以还能觉得它是红色,是因为箭头周边,亮度没那么强的部分还能看出是红色,想把这接近白色的部分提取出红色,自然就不太可能了。

如下图,是用我另一篇博客HSV提取RBG各种颜色c++代码来提取红色得到的图片。可以看出,红色亮灯区域并没提取出来,只有周边的红色部分提取出来了:
在这里插入图片描述


如果从相机isp方面无法继续优化,那么就只能从其他颜色以外的角度想办法来解决了。


下面的方法不是使用hsv提取颜色,所以和上面的HSV方法有所差异:

void ExtractGreenLight(cv::Mat src_img, cv::Mat &dst_img) {std::vector<cv::Mat> Src_Mat_part(src_img.channels());cv::split(src_img, Src_Mat_part);cv::Mat img_green, img_red;img_green = Src_Mat_part[1].clone();img_red = Src_Mat_part[2].clone();dst_img = img_green - img_red;
}void ExtractRedLight(cv::Mat src_img, cv::Mat &dst_img) {std::vector<cv::Mat> Src_Mat_part(src_img.channels());cv::split(src_img, Src_Mat_part);cv::Mat img_blue, img_red, img_green;img_blue = Src_Mat_part[0].clone();img_green = Src_Mat_part[1].clone();img_red = Src_Mat_part[2].clone();dst_img = cv::max(img_green, img_red) - cv::min(img_green, img_blue);// dst_img = img_red - cv::min(img_green,img_blue);// dst_img = 2 * img_red - img_blue - 220;
}

上面两个函数的输出是灰度图像,分别为只包含红(黄)色和只包含绿色的图像。代码提取红色的函数提取的是红色和黄色一起提取出来,然后利用红黄色在交通灯的上下位置来区分红色和黄色。提取绿色的函数就是只提取绿色。

当然,由于我们可以由目标检测得到交通灯的box位置,所以可以得到只包含交通灯的roi图片,对这roi图片进行颜色提取,可以得到下面这张灰度图:
在这里插入图片描述
可以看出,我们能够利用强光周围的红色,也能找到亮灯区域,只不过,此时亮灯区域是提取不了红色,所以图中亮灯区域的左箭头显示为黑色。
对上面灰度图进行二值化,可以得到下面这张图,下图的边界框是我画出来的,不是二值化后得到的框。然后再找轮廓,找到亮灯区域的box。最后再根据找到的box截取出亮灯区域的roi图片。
在这里插入图片描述
不过,这种情况下的亮灯人眼看着都很模糊,机器想要正确识别也不容易。


在这种情况下,可以特殊情况特殊处理,以下是我的一个思路:
先提取出交通灯图片最亮的部分,然后再二值化求轮廓,找出最小外接正矩形 cv::Rect roi = cv::boundingRect(contours[i]);就是亮灯区域的位置,根据最小外接正矩形在交通灯的位置来分类是红色黄色、或者绿色。一个交通灯的上中下三个亮灯区域依次是是绿
当然,对于不是这种交通灯的,该方法就不适用了,毕竟这种方法没有使用颜色空间,并不能真正从颜色角度提取颜色。

更多细节请跳转。

这篇关于【自动驾驶/opencv】32.交通灯颜色提取的难点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1067550

相关文章

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

SpringCloud使用Nacos 配置中心实现配置自动刷新功能使用

《SpringCloud使用Nacos配置中心实现配置自动刷新功能使用》SpringCloud项目中使用Nacos作为配置中心可以方便开发及运维人员随时查看配置信息,及配置共享,并且Nacos支持配... 目录前言一、Nacos中集中配置方式?二、使用步骤1.使用$Value 注解2.使用@Configur

qtcreater配置opencv遇到的坑及实践记录

《qtcreater配置opencv遇到的坑及实践记录》我配置opencv不管是按照网上的教程还是deepseek发现都有些问题,下面是我的配置方法以及实践成功的心得,感兴趣的朋友跟随小编一起看看吧... 目录电脑环境下载环境变量配置qmake加入外部库测试配置我配置opencv不管是按照网上的教程还是de

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

python利用backoff实现异常自动重试详解

《python利用backoff实现异常自动重试详解》backoff是一个用于实现重试机制的Python库,通过指数退避或其他策略自动重试失败的操作,下面小编就来和大家详细讲讲如何利用backoff实... 目录1. backoff 库简介2. on_exception 装饰器的原理2.1 核心逻辑2.2

Java如何根据文件名前缀自动分组图片文件

《Java如何根据文件名前缀自动分组图片文件》一大堆文件(比如图片)堆在一个目录下,它们的命名规则遵循一定的格式,混在一起很难管理,所以本文小编就和大家介绍一下如何使用Java根据文件名前缀自动分组图... 目录需求背景分析思路实现代码输出结果知识扩展需求一大堆文件(比如图片)堆在一个目录下,它们的命名规

使用Python实现实时金价监控并自动提醒功能

《使用Python实现实时金价监控并自动提醒功能》在日常投资中,很多朋友喜欢在一些平台买点黄金,低买高卖赚点小差价,但黄金价格实时波动频繁,总是盯着手机太累了,于是我用Python写了一个实时金价监控... 目录工具能干啥?手把手教你用1、先装好这些"食材"2、代码实现讲解1. 用户输入参数2. 设置无头浏

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj