mapreduce实现浏览该商品的人大多数还浏览了经典应用

2024-06-16 20:18

本文主要是介绍mapreduce实现浏览该商品的人大多数还浏览了经典应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

输入:

日期    ...cookie id.        ...商品id..

xx            xx                        xx

输出:

商品id         商品id列表(按优先级排序,用逗号分隔)

xx                   xx

比如:

id1              id3,id0,id4,id2

id2             id0,id5

整个计算过程分为4步

1、提取原始日志日期,cookie id,商品id信息,按天计算,最后输出数据格式

商品id-0 商品id-1

xx           x x         

这一步做了次优化,商品id-0一定比商品id-1小,为了减少存储,在最后汇总数据转置下即可

reduce做局部排序及排重

 

2、基于上次的结果做汇总,按天计算

商品id-0 商品id-1  关联值(关联值即同时访问这两个商品的用户数)

xx             x x                xx

 

3、汇总最近三个月数据,同时考虑时间衰减,时间越久关联值的贡献越低,最后输出两两商品的关联值(包括转置后)

 

4、行列转换,生成最后要的推荐结果数据,按关联值排序生成

 

第一个MR

import java.io.IOException;
import java.util.ArrayList;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.Logger;
/*
* 输入:原始数据,会有重复
*日期 cookie 楼盘id
* 
* 输出:
* 日期 楼盘id1 楼盘id2  //楼盘id1一定小于楼盘id2 ,按日期 cookie进行分组
* 
*/
public class HouseMergeAndSplit {
public static class Partitioner1 extends Partitioner<TextPair, Text> {
@Override
public int getPartition(TextPair key, Text value, int numParititon) {
return Math.abs((new Text(key.getFirst().toString()+key.getSecond().toString())).hashCode() * 127) % numParititon;
}
}
public static class Comp1 extends WritableComparator {
public Comp1() {
super(TextPair.class, true);
}
@SuppressWarnings("unchecked")
public int compare(WritableComparable a, WritableComparable b) {
TextPair t1 = (TextPair) a;
TextPair t2 = (TextPair) b;
int comp= t1.getFirst().compareTo(t2.getFirst());
if (comp!=0)
return comp;
return t1.getSecond().compareTo(t2.getSecond());
}
}
public static class TokenizerMapper 
extends Mapper<LongWritable, Text, TextPair, Text>{
Text val=new Text("test");
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String s[]=value.toString().split("\001");	    	
TextPair tp=new TextPair(s[0],s[1],s[4]+s[3]); //thedate cookie city+houseid
context.write(tp, val);
}
}
public static class IntSumReducer 
extends Reducer<TextPair,Text,Text,Text> {
private static String comparedColumn[] = new String[3];
ArrayList<String> houselist= new ArrayList<String>();
private static Text keyv = new Text();
private static Text valuev = new Text();
static Logger logger = Logger.getLogger(HouseMergeAndSplit.class.getName());
public void reduce(TextPair key, Iterable<Text> values, 
Context context
) throws IOException, InterruptedException {
houselist.clear();
String thedate=key.getFirst().toString();
String cookie=key.getSecond().toString();  
for (int i=0;i<3;i++)
comparedColumn[i]="";
//first+second为分组键,每次不同重新调用reduce函数
for (Text val:values)
{
if (thedate.equals(comparedColumn[0]) && cookie.equals(comparedColumn[1])&&  !key.getThree().toString().equals(comparedColumn[2]))
{
// context.write(new Text(key.getFirst()+" "+key.getSecond().toString()), new Text(key.getThree().toString()+" first"+ " "+comparedColumn[0]+" "+comparedColumn[1]+" "+comparedColumn[2]));
houselist.add(key.getThree().toString());
comparedColumn[0]=key.getFirst().toString();
comparedColumn[1]=key.getSecond().toString();
comparedColumn[2]=key.getThree().toString();
}
if (!thedate.equals(comparedColumn[0])||!cookie.equals(comparedColumn[1]))
{
//  context.write(new Text(key.getFirst()+" "+key.getSecond().toString()), new Text(key.getThree().toString()+" second"+ " "+comparedColumn[0]+" "+comparedColumn[1]+" "+comparedColumn[2]));
houselist.add(key.getThree().toString());
comparedColumn[0]=key.getFirst().toString();
comparedColumn[1]=key.getSecond().toString();
comparedColumn[2]=key.getThree().toString();
}
}
keyv.set(comparedColumn[0]); //日期
//valuev.set(houselist.toString());
//logger.info(houselist.toString());
//context.write(keyv,valuev);
for (int i=0;i<houselist.size()-1;i++)
{
for (int j=i+1;j<houselist.size();j++)
{    valuev.set(houselist.get(i)+"	"+houselist.get(j)); //关联的楼盘
context.write(keyv,valuev);
}
} 
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseMergeAndSplit");
job.setNumReduceTasks(4);
job.setJarByClass(HouseMergeAndSplit.class);
job.setMapperClass(TokenizerMapper.class);
job.setMapOutputKeyClass(TextPair.class);
job.setMapOutputValueClass(Text.class);
// 设置partition
job.setPartitionerClass(Partitioner1.class);
// 在分区之后按照指定的条件分组
job.setGroupingComparatorClass(Comp1.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

TextPair

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
public class TextPair implements WritableComparable<TextPair> {
private Text first;
private Text second;
private Text three;
public TextPair() {
set(new Text(), new Text(),new Text());
}
public TextPair(String first, String second,String three) {
set(new Text(first), new Text(second),new Text(three));
}
public TextPair(Text first, Text second,Text Three) {
set(first, second,three);
}
public void set(Text first, Text second,Text three) {
this.first = first;
this.second = second;
this.three=three;
}
public Text getFirst() {
return first;
}
public Text getSecond() {
return second;
}
public Text getThree() {
return three;
}
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
three.write(out);
}
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
three.readFields(in);
}
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
cmp= second.compareTo(tp.second);
if (cmp != 0) {
return cmp;
}
return three.compareTo(tp.three);
}
}


TextPairSecond

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
public class TextPairSecond implements WritableComparable<TextPairSecond> {
private Text first;
private FloatWritable second;
public TextPairSecond() {
set(new Text(), new FloatWritable());
}
public TextPairSecond(String first, float second) {
set(new Text(first), new FloatWritable(second));
}
public TextPairSecond(Text first, FloatWritable second) {
set(first, second);
}
public void set(Text first, FloatWritable second) {
this.first = first;
this.second = second;
}
public Text getFirst() {
return first;
}
public FloatWritable getSecond() {
return second;
}
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
}
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
}
public int compareTo(TextPairSecond tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
return second.compareTo(tp.second);
}
}

 

第二个MR

import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.Logger;
/*
*  统计楼盘之间共同出现的次数
* 输入:
* 日期 楼盘1 楼盘2
* 
* 输出:
* 日期 楼盘1 楼盘2 共同出现的次数
* 
*/
public class HouseCount {
public static class TokenizerMapper 
extends Mapper<LongWritable, Text, Text, IntWritable>{
IntWritable iw=new IntWritable(1);
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
context.write(value, iw);
}
}
public static class IntSumReducer 
extends Reducer<Text,IntWritable,Text,IntWritable> {
IntWritable result=new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, 
Context context
) throws IOException, InterruptedException {
int sum=0;
for (IntWritable iw:values)
{
sum+=iw.get();
}
result.set(sum);
context.write(key, result)	;
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseCount");
job.setNumReduceTasks(2);
job.setJarByClass(HouseCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}


第三个MR

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.Logger;
/*
* 汇总近三个月统计楼盘之间共同出现的次数,考虑衰减系数, 并最后a b 转成 b a输出一次
* 输入:
* 日期  楼盘1 楼盘2 共同出现的次数
* 
* 输出
* 楼盘1 楼盘2 共同出现的次数(考虑了衰减系数,每天的衰减系数不一样)
* 
*/
public class HouseCountHz {
public static class HouseCountHzMapper 
extends Mapper<LongWritable, Text, Text, FloatWritable>{
Text keyv=new Text();
FloatWritable valuev=new FloatWritable();
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String[] s=value.toString().split("\t");
keyv.set(s[1]+"	"+s[2]);//楼盘1,楼盘2
Calendar date1=Calendar.getInstance();
Calendar d2=Calendar.getInstance();
Date b = null;
SimpleDateFormat sdf=new SimpleDateFormat("yyyy-MM-dd");
try {
b=sdf.parse(s[0]);
} catch (ParseException e) {
e.printStackTrace();
}
d2.setTime(b);
long n=date1.getTimeInMillis();
long birth=d2.getTimeInMillis();
long sss=n-birth;
int day=(int)((sss)/(3600*24*1000)); //该条记录的日期与当前日期的日期差
float factor=1/(1+(float)(day-1)/10); //衰减系数
valuev.set(Float.parseFloat(s[3])*factor);
context.write(keyv, valuev);
}
}
public static class HouseCountHzReducer 
extends Reducer<Text,FloatWritable,Text,FloatWritable> {
FloatWritable result=new FloatWritable();
Text keyreverse=new Text();
public void reduce(Text key, Iterable<FloatWritable> values, 
Context context
) throws IOException, InterruptedException {
float sum=0;
for (FloatWritable iw:values)
{
sum+=iw.get();
}
result.set(sum);
String[] keys=key.toString().split("\t");
keyreverse.set(keys[1]+"	"+keys[0]);
context.write(key, result)	;
context.write(keyreverse, result)	;
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseCountHz");
job.setNumReduceTasks(2);
job.setJarByClass(HouseCountHz.class);
job.setMapperClass(HouseCountHzMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FloatWritable.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(HouseCountHzReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}


第四个MR

import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
/*
* 输入数据:
* 楼盘1 楼盘2 共同出现的次数
* 
* 输出数据
*  楼盘1 楼盘2,楼盘3,楼盘4 (按次数排序)
*/
public class HouseRowToCol {
public static class Partitioner1 extends Partitioner<TextPairSecond, Text> {
@Override
//分区
public int getPartition(TextPairSecond key, Text value, int numParititon) {
return Math.abs((new Text(key.getFirst().toString()+key.getSecond().toString())).hashCode() * 127) % numParititon;
}
}
//分组
public static class Comp1 extends WritableComparator {
public Comp1() {
super(TextPairSecond.class, true);
}
@SuppressWarnings("unchecked")
public int compare(WritableComparable a, WritableComparable b) {
TextPairSecond t1 = (TextPairSecond) a;
TextPairSecond t2 = (TextPairSecond) b;
return t1.getFirst().compareTo(t2.getFirst());
}
}
//排序
public static class KeyComp extends WritableComparator {
public KeyComp() {
super(TextPairSecond.class, true);
}
@SuppressWarnings("unchecked")
public int compare(WritableComparable a, WritableComparable b) {
TextPairSecond t1 = (TextPairSecond) a;
TextPairSecond t2 = (TextPairSecond) b;
int comp= t1.getFirst().compareTo(t2.getFirst());
if (comp!=0)
return comp;
return -t1.getSecond().compareTo(t2.getSecond());
}
} 
public static class HouseRowToColMapper 
extends Mapper<LongWritable, Text, TextPairSecond, Text>{
Text houseid1=new Text();
Text houseid2=new Text();
FloatWritable weight=new FloatWritable();
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String s[]=value.toString().split("\t");
weight.set(Float.parseFloat(s[2]));
houseid1.set(s[0]);
houseid2.set(s[1]);
TextPairSecond tp=new TextPairSecond(houseid1,weight); 
context.write(tp, houseid2);
}
}
public static class HouseRowToColReducer 
extends Reducer<TextPairSecond,Text,Text,Text> {
Text valuev=new Text();
public void reduce(TextPairSecond key, Iterable<Text> values, 
Context context
) throws IOException, InterruptedException {
Text keyv=key.getFirst();
Iterator<Text> it=values.iterator();
StringBuilder sb=new StringBuilder(it.next().toString());
while(it.hasNext())
{
sb.append(","+it.next().toString());
}
valuev.set(sb.toString());
context.write(keyv, valuev);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
FileSystem fstm = FileSystem.get(conf);   
Path outDir = new Path(otherArgs[1]);   
fstm.delete(outDir, true);
conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符
Job job = new Job(conf, "HouseRowToCol");
job.setNumReduceTasks(4);
job.setJarByClass(HouseRowToCol.class);
job.setMapperClass(HouseRowToColMapper.class);
job.setMapOutputKeyClass(TextPairSecond.class);
job.setMapOutputValueClass(Text.class);
// 设置partition
job.setPartitionerClass(Partitioner1.class);
// 在分区之后按照指定的条件分组
job.setGroupingComparatorClass(Comp1.class);
job.setSortComparatorClass(KeyComp.class);
// 设置reduce
// 设置reduce的输出
job.setReducerClass(HouseRowToColReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//job.setNumReduceTasks(18);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}




 

 

这篇关于mapreduce实现浏览该商品的人大多数还浏览了经典应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067445

相关文章

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec