降维:主成分分析

2024-06-16 19:38
文章标签 分析 降维 成分

本文主要是介绍降维:主成分分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主成分分析最大方差理论

主成分分析(PCA)目标是找到数据中的主成分,并利用这些主成分表征原始数据,因而做到降维
在信号领域,认为信号具有较大的方差,噪声具有较小的方差,信号与噪声之比称为信噪比,信噪比越大意味着数据质量也就越好。进而可以采用最大化投影方差的方法实现PCA的目标。
给定一组数据点 { v 1 , v 2 , ⋯   , v n } \{v_1,v_2,\cdots,v_n\} {v1,v2,,vn},进行中心化表示:
{ x 1 , x 2 , ⋯   , x n } = { v 1 − μ , v 2 − μ , ⋯   , v n − μ } , μ = 1 n ∑ i = 1 n v i \{x_1,x_2,\cdots,x_n\}=\{v_1-\mu,v_2-\mu,\cdots,v_n-\mu\},\mu=\frac{1}{n}\sum_{i=1}^{n}v_i {x1,x2,,xn}={v1μ,v2μ,,vnμ},μ=n1i=1nvi
目标是找到一个投影方向 ω \omega ω(单位方向向量)使得 { x 1 , x 2 , ⋯   , x n } \{x_1,x_2,\cdots,x_n\} {x1,x2,,xn} ω \omega ω上的投影方差尽可能大,投影后的均值为
μ ′ = 1 n ∑ i = 1 n x i T ω = ( 1 n ∑ i = 1 n x i T ) ω = 0 \mu'=\frac{1}{n}\sum_{i=1}^{n}x_i^T\omega=(\frac{1}{n}\sum_{i=1}^{n}x_i^T)\omega=0 μ=n1i=1nxiTω=(n1i=1nxiT)ω=0此时,投影后的方差可以表示为
D ( x ) = 1 n ∑ i = 1 n ( x i T ω ) 2 = ω T ( 1 n ∑ i = 1 n x i x i T ) ω D(x)=\frac{1}{n}\sum_{i=1}^{n}(x_i^T\omega)^2=\omega^T(\frac{1}{n}\sum_{i=1}^{n}x_ix_i^T)\omega D(x)=n1i=1n(xiTω)2=ωT(n1i=1nxixiT)ω
1 n ∑ i = 1 n x i x i T \frac{1}{n}\sum_{i=1}^{n}x_ix_i^T n1i=1nxixiT是样本协方差矩阵,记为 Σ \Sigma Σ.
PCA求解下述最大化问题
max ⁡ ω T Σ ω , s . t . ω T ω = 1 \max{\omega^T\Sigma\omega},s.t.\omega^T\omega=1 maxωTΣω,s.t.ωTω=1引入拉格朗日乘子,可以推出 Σ ω = λ ω \Sigma\omega=\lambda\omega Σω=λω,此时有
D ( x ) = ω T Σ ω = λ ω T ω = λ D(x)=\omega^T\Sigma\omega=\lambda\omega^T\omega=\lambda D(x)=ωTΣω=λωTω=λ x x x投影后的方差为协方差矩阵的特征值,找到的最大方差也就是协方差矩阵最大的特征值,最佳投影方向是相应的特征向量。可以推出次佳投影方向是第二大特征值对应的特征向量,依此类推。
总结归纳PCA求解过程:

  • 求样本协方差矩阵
  • 求解协方差矩阵特征值
  • 根据需求,取前 k k k大特征值所对应的特征向量 ω 1 , ω 2 , ⋯   , ω k \omega_1,\omega_2,\cdots,\omega_k ω1,ω2,,ωk,投影得到样本的 k k k维表示
    x i ′ = ( ω 1 T x i , ω 2 T x i , ⋯   , ω k T x i ) T x_i'=(\omega^T_1x_i,\omega^T_2x_i,\cdots,\omega^T_kx_i)^T xi=(ω1Txi,ω2Txi,,ωkTxi)T

这篇关于降维:主成分分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067357

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3