DAG最长路问题详解

2024-06-16 14:44
文章标签 问题 详解 最长 dag

本文主要是介绍DAG最长路问题详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DAG就是有向无环图,求解最长路,也就是所谓的关键路径。但是求解关键路径的方式比较复杂,而DAG上的最长路或者最短路问题又比较重要,很多问题都可以转换为求解DAG上的最长路或最短路问题。由于最长路和最短路的思想是一致的,因此下面以最长路为例:

主要分为两个问题:

(1)求整个DAG中的最长路径(即不固定起点和终点)

(2)固定终点,求DAG的最长路径

先解决第一个问题,给定一个有向无环图,怎样求解整个图的所有路径中权值之和最大的那条。

针对这个问题,令dp[i]表示从i号顶点出发能获得的最长路径长度,这样所有dp[i]的最大值就是整个DAG的最长路径长度。

求解dp数组时注意到dp[i]表示从i号顶点出发能获得的最长路径长度,这个除了使用逆拓扑排序来做,可以使用递归的方法。

int dp(int i){if(dp[i]>0){return dp[i];}for(int j=0;j<n;j++){if(G[i][j]!=INF){dp[i]=max(dp[i],dp(j)+G[i][j]);}}return dp[i];
}

由于从出度为0的顶点出发的最长路径长度为0,因此边界为这些顶点的dp值为0,但具体实现中不妨对整个dp数组初始化为0,这样dp函数当前访问的顶点i的出度为0时就会返回dp[i]=0(以此作为dp的边界),而出度不是0的顶点则会递归求解,递归过程中遇到已经计算过的顶点则直接返回对应的dp值,于是从程序逻辑上按照了拓扑排序的顺序进行。

如何知道最长路径是那条?

事实上可以仿照Dijkstra算法中求解最短路径的做法。开一个int型choice数组记录最长路径上顶点的后继顶点,这样就可以像Dijkstra算法中那样来求解最长路径了,只不过由于choice数组存放的是后继顶点,因此使用迭代即可。如果最终可能有多条最长路径,将choice数组改为vector类型的数组即可。

int dp(int i){if(dp[i]>0){return dp[i];}for(int j=0;j<n;j++){if(G[i][j]!=INF){int temp=dp(j)+G[i][j];if(temp>dp[i]){dp[i]=temp;choice[i]=j;//i号顶点的后继顶点是j }}}return dp[i]; 
}
void printPath(int i){printf("%d",i);while(choice[i]!=-1){i=choice;printf("->%d",i);}
}

对一般的动态规划问题而言,如果需要得到具体的最优方案,可以采用类似的方法,即记录每次决策所选择的策略,然后在dp数组计算完毕后根据具体情况进行递归或者迭代来获取方案。

求解最优方案时由于字典序的大小总是先根据序列中较前的部分来判断,因此序列中越靠前的顶点,其dp值应当越后计算(对一般的序列型动态规划问题也是如此)。

在上面讨论的问题上,接下来谈论第二个问题:固定终点,求DAG的最长路径长度。

此时假设规定的终点为T,那么可以令dp[i]表示从i号顶点出发到达终点T能获得的最长路径长度

这个问题和上面问题的区别是边界,在第一个问题中没有固定终点,因此所有出度为0的顶点的dp值为0是边界;但是这个问题固定了终点,因此边界应该为dp[T]=0。而初始化时dp数组不能初始化为0,因为从某些顶点出发可能无法到达终点T。合适的做法是初始化dp数组为一个负的大数,来保证无法到达终点的含义得以表达;然后设置一个vis数组表示顶点是否已经被计算。

int dp(int i){if(vis[i]){return dp[i];}vis[i]=true;for(int j=0;j<n;j++){if(G[i][j]!=INF){dp[i]=max(dp[i],dp(j)+G[i][j]);}}return dp[i];
}

记录方案及如何选择字典序最小的方案均与第一个问题相同。

这篇关于DAG最长路问题详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066732

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca