DAG最长路问题详解

2024-06-16 14:44
文章标签 问题 详解 最长 dag

本文主要是介绍DAG最长路问题详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DAG就是有向无环图,求解最长路,也就是所谓的关键路径。但是求解关键路径的方式比较复杂,而DAG上的最长路或者最短路问题又比较重要,很多问题都可以转换为求解DAG上的最长路或最短路问题。由于最长路和最短路的思想是一致的,因此下面以最长路为例:

主要分为两个问题:

(1)求整个DAG中的最长路径(即不固定起点和终点)

(2)固定终点,求DAG的最长路径

先解决第一个问题,给定一个有向无环图,怎样求解整个图的所有路径中权值之和最大的那条。

针对这个问题,令dp[i]表示从i号顶点出发能获得的最长路径长度,这样所有dp[i]的最大值就是整个DAG的最长路径长度。

求解dp数组时注意到dp[i]表示从i号顶点出发能获得的最长路径长度,这个除了使用逆拓扑排序来做,可以使用递归的方法。

int dp(int i){if(dp[i]>0){return dp[i];}for(int j=0;j<n;j++){if(G[i][j]!=INF){dp[i]=max(dp[i],dp(j)+G[i][j]);}}return dp[i];
}

由于从出度为0的顶点出发的最长路径长度为0,因此边界为这些顶点的dp值为0,但具体实现中不妨对整个dp数组初始化为0,这样dp函数当前访问的顶点i的出度为0时就会返回dp[i]=0(以此作为dp的边界),而出度不是0的顶点则会递归求解,递归过程中遇到已经计算过的顶点则直接返回对应的dp值,于是从程序逻辑上按照了拓扑排序的顺序进行。

如何知道最长路径是那条?

事实上可以仿照Dijkstra算法中求解最短路径的做法。开一个int型choice数组记录最长路径上顶点的后继顶点,这样就可以像Dijkstra算法中那样来求解最长路径了,只不过由于choice数组存放的是后继顶点,因此使用迭代即可。如果最终可能有多条最长路径,将choice数组改为vector类型的数组即可。

int dp(int i){if(dp[i]>0){return dp[i];}for(int j=0;j<n;j++){if(G[i][j]!=INF){int temp=dp(j)+G[i][j];if(temp>dp[i]){dp[i]=temp;choice[i]=j;//i号顶点的后继顶点是j }}}return dp[i]; 
}
void printPath(int i){printf("%d",i);while(choice[i]!=-1){i=choice;printf("->%d",i);}
}

对一般的动态规划问题而言,如果需要得到具体的最优方案,可以采用类似的方法,即记录每次决策所选择的策略,然后在dp数组计算完毕后根据具体情况进行递归或者迭代来获取方案。

求解最优方案时由于字典序的大小总是先根据序列中较前的部分来判断,因此序列中越靠前的顶点,其dp值应当越后计算(对一般的序列型动态规划问题也是如此)。

在上面讨论的问题上,接下来谈论第二个问题:固定终点,求DAG的最长路径长度。

此时假设规定的终点为T,那么可以令dp[i]表示从i号顶点出发到达终点T能获得的最长路径长度

这个问题和上面问题的区别是边界,在第一个问题中没有固定终点,因此所有出度为0的顶点的dp值为0是边界;但是这个问题固定了终点,因此边界应该为dp[T]=0。而初始化时dp数组不能初始化为0,因为从某些顶点出发可能无法到达终点T。合适的做法是初始化dp数组为一个负的大数,来保证无法到达终点的含义得以表达;然后设置一个vis数组表示顶点是否已经被计算。

int dp(int i){if(vis[i]){return dp[i];}vis[i]=true;for(int j=0;j<n;j++){if(G[i][j]!=INF){dp[i]=max(dp[i],dp(j)+G[i][j]);}}return dp[i];
}

记录方案及如何选择字典序最小的方案均与第一个问题相同。

这篇关于DAG最长路问题详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066732

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (