JUC并发编程第十三章——读写锁、邮戳锁

2024-06-16 13:20

本文主要是介绍JUC并发编程第十三章——读写锁、邮戳锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章路线总纲

无锁——>独占锁——>读写锁——>邮戳锁

1 关于锁的面试题

  • 你知道Java里面有那些锁
  • 你说说你用过的锁,锁饥饿问题是什么?
  • 有没有比读写锁更快的锁
  • StampedLock知道吗?(邮戳锁/票据锁)
  • ReentrantReadWriteLock有锁降级机制,你知道吗?

2 简单聊聊ReentrantReadWriteLock

类图:

读写锁的演变情况:

2.1 是什么?

读写锁说明

  • 一个资源能够被多个读线程访问,或者被一个写线程访问,但是不能同时存在读写线程

演变

  • 无锁无序->加锁->读写锁->邮戳锁

读写锁意义和特点

  • 读写锁只允许读读共存,而读写和写写依然是互斥的,恰好大多实际场景是”读/读“线程间不存在互斥关系,只有”读/写“线程或者”写/写“线程间的操作是需要互斥的,因此引入了 ReentrantReadWriteLock
  • 一个ReentrantReadWriteLock同时只能存在一个写锁但是可以存在多个读锁,但是不能同时存在写锁和读锁,也即资源可以被多个读操作访问,或一个写操作访问,但两者不能同时进行。
  • 只有在读多写少情景之下,读写锁才具有较高的性能体现。

2.2 特点

可重入、读写兼顾

结论:一体两面,读写互斥,读读共享,读没有完成的时候其他线程写锁无法获得

ReentrantReadWriteLock的缺点:

1. 锁饥饿问题:

  • ReentrantReadWriteLock实现了读写分离,但是一旦读操作比较多的时候,想要获取写锁就变得比较困难了,因此当前有可能会一直存在读锁,而无法获得写锁。

2. 锁降级:

  • 将写锁降级为读锁------>遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级为读锁
  • 如果一个线程持有了写锁,在没有释放写锁的情况下,它还可以继续获得读锁。这就是写锁的降级,降级成为了读锁。
  • 如果释放了写锁,那么就完全转换为读锁
  • 如果有线程在读,那么写线程是无法获取写锁的,是悲观锁的策略

2.3 读写锁案例

  • 使用读写锁之前,使用synchronized的情况
public class ReentrantReadWriteLockDemo {public static void main(String[] args) {MyCache cache = new MyCache();//开启10个线程,写入数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.write(finalI + "", finalI + "");}, String.valueOf(i)).start();}//开启10个线程,读取数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.read(finalI + "");}, String.valueOf(i)).start();}}
}//模拟一个缓存资源类,有读写两种功能
class MyCache {HashMap<String, String> map = new HashMap<>();ReentrantLock lock = new ReentrantLock();//读写都加锁public void write(String key, String value) {lock.lock();try {System.out.println(Thread.currentThread().getName() + "线程开始写入数据...");//延迟500ms模拟业务耗时,同时可以看出读写不能共同执行 (因为运行结果是先打印一个线程写入,再打印对应线程写入完成)TimeUnit.MILLISECONDS.sleep(500);map.put(key, value);System.out.println(Thread.currentThread().getName() + "线程完成写入数据!");} catch (InterruptedException e) {e.printStackTrace();}finally {lock.unlock();}}public void read(String key) {lock.lock();try {System.out.println(Thread.currentThread().getName() + "线程开始读取数据...");String val = map.get(key);TimeUnit.MILLISECONDS.sleep(200);System.out.println(Thread.currentThread().getName() + "线程读取到的数据是:\t" + val);} catch (InterruptedException e) {e.printStackTrace();}finally {lock.unlock();}}
}
运行结果:
1线程开始写入数据...
1线程完成写入数据!
2线程开始写入数据...
2线程完成写入数据!
3线程开始写入数据...
3线程完成写入数据!
4线程开始写入数据...
4线程完成写入数据!
5线程开始写入数据...
5线程完成写入数据!
6线程开始写入数据...
6线程完成写入数据!
7线程开始写入数据...
7线程完成写入数据!
9线程开始写入数据...
9线程完成写入数据!
8线程开始写入数据...
8线程完成写入数据!
10线程开始写入数据...
10线程完成写入数据!
1线程开始读取数据...
1线程读取到的数据是:	1
2线程开始读取数据...
2线程读取到的数据是:	2
3线程开始读取数据...
3线程读取到的数据是:	3
4线程开始读取数据...
4线程读取到的数据是:	4
5线程开始读取数据...
5线程读取到的数据是:	5
6线程开始读取数据...
6线程读取到的数据是:	6
7线程开始读取数据...
7线程读取到的数据是:	7
8线程开始读取数据...
8线程读取到的数据是:	8
9线程开始读取数据...
9线程读取到的数据是:	9
10线程开始读取数据...
10线程读取到的数据是:	10

说明:可以看出,开始写入/读取和完成写入/读取,都是成对出现的。这说明这写入/读取期间,其他线程不能执行写入/读取。读写/读读/写写都互斥了。

问题:我们希望的情况应该是,读写/写写都互斥,但读读可以并发读取。从而引出了读写锁(对写独占,对读共享)

  • 使用读写锁
public class ReentrantReadWriteLockDemo {public static void main(String[] args) {MyCache cache = new MyCache();//开启10个线程,写入数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.write(finalI + "", finalI + "");}, String.valueOf(i)).start();}//开启10个线程,读取数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.read(finalI + "");}, String.valueOf(i)).start();}}
}//模拟一个缓存资源类,有读写两种功能
class MyCache {HashMap<String, String> map = new HashMap<>();ReentrantLock lock = new ReentrantLock();ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();//读写都加锁public void write(String key, String value) {rwLock.writeLock().lock();try {System.out.println(Thread.currentThread().getName() + "线程开始写入数据...");//延迟500ms模拟业务耗时,同时可以看出读写不能共同执行 (因为运行结果是先打印一个线程写入,再打印对应线程写入完成)TimeUnit.MILLISECONDS.sleep(500);map.put(key, value);System.out.println(Thread.currentThread().getName() + "线程完成写入数据!");} catch (InterruptedException e) {e.printStackTrace();} finally {rwLock.writeLock().unlock();}}public void read(String key) {rwLock.readLock().lock();try {System.out.println(Thread.currentThread().getName() + "线程开始读取数据...");String val = map.get(key);TimeUnit.MILLISECONDS.sleep(200);System.out.println(Thread.currentThread().getName() + "线程读取到的数据是:\t" + val);} catch (InterruptedException e) {e.printStackTrace();} finally {rwLock.readLock().unlock();}}
}
运行结果:
1线程开始写入数据...
1线程完成写入数据!
2线程开始写入数据...
2线程完成写入数据!
3线程开始写入数据...
3线程完成写入数据!
4线程开始写入数据...
4线程完成写入数据!
5线程开始写入数据...
5线程完成写入数据!
6线程开始写入数据...
6线程完成写入数据!
7线程开始写入数据...
7线程完成写入数据!
8线程开始写入数据...
8线程完成写入数据!
9线程开始写入数据...
9线程完成写入数据!
10线程开始写入数据...
10线程完成写入数据!
1线程开始读取数据...
9线程开始读取数据...
7线程开始读取数据...
6线程开始读取数据...
5线程开始读取数据...
3线程开始读取数据...
4线程开始读取数据...
2线程开始读取数据...
10线程开始读取数据...
8线程开始读取数据...
10线程读取到的数据是:10
4线程读取到的数据是:	4
2线程读取到的数据是:	2
8线程读取到的数据是:	8
3线程读取到的数据是:	3
7线程读取到的数据是:	7
6线程读取到的数据是:	6
5线程读取到的数据是:	5
1线程读取到的数据是:	1
9线程读取到的数据是:	9

说明:可以看出,所有写操作还是跟之前一样,全部互斥。但读操作可以并发读取。

结论

使用ReadWriteLock实现读写操作,一体两面,读写互斥,读读共享,但是读没有完成时候其它线程写锁无法获取


这篇关于JUC并发编程第十三章——读写锁、邮戳锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066563

相关文章

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

ShardingSphere之读写分离方式

《ShardingSphere之读写分离方式》:本文主要介绍ShardingSphere之读写分离方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录ShardingSphere-读写分离读写分离mysql主从集群创建 user 表主节点执行见表语句项目代码读写分

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与