Python高级编程:Functools模块的8个高级用法,强烈建议添加到你的开发工具箱中!

本文主要是介绍Python高级编程:Functools模块的8个高级用法,强烈建议添加到你的开发工具箱中!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. functools.partial

2. functools.lru_cache

lru_cache的特点

cache的特点

性能比较与选择

3. functools.reduce

functools.reduce的作用

工作原理

示例

累加序列中的所有元素

计算阶乘

initializer的使用

应用场景

示例:计算平均销售额

小结

4. functools.update_wrapper

应用场景

5. functools.wraps

灵活性和自定义控制

低级控制和组合

理解装饰器实现细节

小结

6. functools.total_ordering

functools.total_ordering的作用

原理与实现

应用场景

小结

7. functools.singledispatch

functools.singledispatch的作用

原理与实现

应用场景

使用singledispatchmethod装饰类方法

小结

8. functools.cached_property (Python 3.8+)

functools.cached_property的作用

functools.cached_property的实现原理

详细示例

应用场景

注意事项

小结

结论



Python 是一门多功能语言,其众多优点之一就是它有很多功能强大的内置模块,这些模块使我们程序员在很多时候不用重复造轮子。functools 模块就是这样一个典型的例子。充分利用它可以让我们的 Python 代码更整洁、清晰和专业。

本文将介绍 Python 这个杰出模块的 8 个必知用途。阅读后,相信你能够在“Python 大师”的路上更进一步。

1. functools.partial

创建一个函数的新版本,并固定部分参数,减少重复传递参数的次数。类似于方法重写。

Python 有很多易用的内置函数,但是有时候对于特殊的案例我们必须向它们添加特定的参数。比如,int() 函数可以用于将字符串转换为整数。如果待转换的字符串是一个二进制整数的话,我们必须添加第二个参数:

print(f"The binary integer 101101 is equal: {int('101101', base=2)}")
# The binary integer 101101 is equal: 45

如果我们需要频繁地使用这个二进制转换功能,却总是重复写入相同的第二个参数,那将是很烦人的(同时看起来也是蠢蠢的)。

那么有没有一种方法可以让我们一处实现多处使用呢?functools 中的 partial 方法刚好可以帮助我们达到这个目的,让我们的代码变得更简洁:

from functools import partialbinary_trans = partial(int, base=2)
print(f"101101 (base 2) is equal to: {binary_trans('101101')} (base 10)")
print(f"1111110 (base 2) is equal to: {binary_trans('1111110')} (base 10)")
print(f"11111111 (base 2) is equal to: {binary_trans('11111111')} (base 10)")

输出结果如下:

101101 (base 2) is equal to: 45 (base 10)
1111110 (base 2) is equal to: 126 (base 10)
11111111 (base 2) is equal to: 255 (base 10)

这样一来,不管后续调用多少次,我们都不必给出第二个参数,实现定制化转换功能。当然,对于自定义函数,也同样可以使用 partial 方法。

from functools import partialdef multiply(x, y):
    return x * ydouble = partial(multiply, 2)
print(double(5))  # 输出 10

这里的 partial 实现了某个数值 2 倍的定制化计算功能。

2. functools.lru_cache

使用最近最少使用(Least Recently Used, LRU)缓存装饰器,提高函数的性能,尤其适用于计算密集型或 I/O 密集型函数。

下面看一个常见的例子,即斐波那契数列数字的计算,我们分别用常规方法和缓存方法实现,看看它们之间的性能差距:

from functools import lru_cache
import timeitdef fibonacci_norm(n):if n < 2:return nreturn fibonacci_norm(n - 1) + fibonacci_norm(n - 2)@lru_cache(maxsize=32)
def fibonacci_lru_cached(n):if n < 2:return nreturn fibonacci_lru_cached(n - 1) + fibonacci_lru_cached(n - 2)def timed_fibonacci_norm():resutl = fibonacci_norm(30)return resutldef timed_fibonacci_cached():resutl = fibonacci_lru_cached(30)# 清除缓存结果fibonacci_lru_cached.cache_clear()return resutlif __name__ == '__main__':time_norm = timeit.timeit(timed_fibonacci_norm, number=50)time_cached = timeit.timeit(timed_fibonacci_cached, number=50)print(f'Average time for fibonacci (norm): {time_norm / 50} s')print(f'Average time for fibonacci (cached): {time_cached / 50} s')print(f'Cached version is faster than norm: {time_norm / time_cached / 50}')

执行结果如下:

Average time for fibonacci (norm): 0.1954923020000024 s
Average time for fibonacci (cached): 1.077199999599543e-05 s
Cached version is faster than norm: 362.9637988724064

从上面的结果可以看出,相较于常规方法,使用 lru_cache 方法速度快了大约 363 倍,对性能的提升非常显著。而且随着计算数字的增大,这个差距还会继续扩大。

此外,缓存方法还有另一种实现方式,即 cache 装饰器。其实现方式与 lru_cache 类似。我们可以看看它与常规方法的性能差距:

from functools import cache
import timeit@cache
def fibonacci_cached(n):
    if n < 2:
        return n
    return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)def timed_fibonacci_cached():
    resutl = fibonacci_lru_cached(30)
    # 重新装饰函数以清楚缓存
    fibonacci_cached = cache(fibonacci_lru_cached)
    return resutl
    
if __name__ == '__main__':
    time_norm = timeit.timeit(timed_fibonacci_norm, number=50)
    time_cached = timeit.timeit(timed_fibonacci_cached, number=50)
    print(f'Average time for fibonacci (norm): {time_norm / 50} s')
    print(f'Average time for fibonacci (cached): {time_cached / 50} s')
    print(f'Cached version is faster than norm: {time_norm / time_cached / 50}')

可以看出,cache 的性能更好,比常规方法快了约 1213 倍,主要是因为 lru_cache 存在缓存策略,所以在缓存管理上会有一定开销。

lru_cache 和 cache 各有其优点和适用场景,性能上的差异主要取决于具体的使用场景和缓存策略的需求。下面是一些对比和选择建议:

lru_cache的特点

  • LRU 缓存策略lru_cache 使用最近最少使用(Least Recently Used, LRU)策略,当缓存达到最大容量时,会自动清除最久未使用的条目。这对于需要限制缓存大小并且期望自动管理缓存淘汰的场景非常有用。

  • 缓存统计信息lru_cache 提供缓存命中率等统计信息(通过 cache_info 方法),有助于监控和优化缓存使用。

  • 性能:在缓存大小有限且需要频繁访问缓存条目的情况下,lru_cache 能够显著提升性能,但在缓存管理上会有一定的开销。

cache的特点

  • 无缓存策略cache 是一个简单的无策略缓存,它没有缓存淘汰机制,即缓存条目会一直保留,直到程序终止或显式清除。这适合于需要缓存所有结果且不需要考虑内存限制的场景。

  • 性能cache 的性能开销较小,因为它没有管理缓存条目的开销,在没有内存限制和缓存淘汰需求的情况下,cache 可以提供更好的性能。

性能比较与选择

  • 内存限制:如果你的应用需要限制内存使用,并且缓存数据量可能很大,选择 lru_cache 更为合适,因为它能够自动管理缓存大小并清除旧条目。

  • 缓存条目数量少:如果缓存的数据量较少,且不会超出内存限制,使用 cache 会更加简单高效,因为它没有缓存管理的开销。

  • 缓存管理需求:如果你需要了解缓存的使用情况和命中率,lru_cache 提供的统计信息会很有帮助。

  • 性能测试:对于特定应用场景,可以通过实际测试来比较两者的性能。可以使用 timeit 模块进行多次调用的时间测量,评估两者在实际应用中的表现。

3. functools.reduce

functools.reduce 是 Python 很重要的高阶函数之一,它用于对可迭代对象中的元素进行累计操作,最终将其简化为单一的值。reduce 可以说是一个“归约”函数,通过对序列中的元素依次应用指定的二元操作,将序列归约为一个值。

functools.reduce的作用

reduce 的作用是对序列进行二元操作,并将序列简化为一个单一的值。它的使用格式如下:

from functools import reduceresult = reduce(function, iterable[, initializer])
  • function:一个接受两个参数的函数,reduce 会将其应用于 iterable 的元素。

  • iterable:一个可迭代对象(如列表、元组等)。

  • initializer(可选):初始值,如果提供,则首先将其与序列的第一个元素一起传递给

这篇关于Python高级编程:Functools模块的8个高级用法,强烈建议添加到你的开发工具箱中!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066552

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买