Explain Python Machine Learning Models with SHAP Library

2024-06-16 12:52

本文主要是介绍Explain Python Machine Learning Models with SHAP Library,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Explain Python Machine Learning Models with SHAP Library – Minimatech

(能翻墙直接看原文)

Explain Python Machine Learning Models with SHAP Library

  • 11 September 2021
  • Muhammad Fawi
  • Machine Learning

Using SHapley Additive exPlainations (SHAP) Library to Explain Python ML Models

Almost always after developing an ML model, we find ourselves in a position where we need to explain this model. Even when the model is very good, it is still a black box that needs to be deciphered. Explaining a model is a very important step in a data science project that we usually overlook. SHAP library helps in explaining python machine learning models, even deep learning ones, so easy with intuitive visualizations. It also demonstrates feature importances and how each feature affects model output.

Here we are going to explore some of SHAP’s power in explaining a Logistic Regression model.

We will use the Bank Marketing dataset[1] to predict whether a customer will subscribe a term deposit.

Data Exploration

We will start by importing all necessary libraries and reading the data. We will use the smaller dataset in the bank-additional zip file.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import shap

import zipfile

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import OneHotEncoder, StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.compose import ColumnTransformer

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix, precision_recall_curve

from sklearn.metrics import accuracy_score, precision_score

from sklearn.metrics import recall_score, auc, roc_curve

zf = zipfile.ZipFile("bank-additional.zip")

df = pd.read_csv(zf.open("bank-additional/bank-additional.csv"), sep = ";")

df.shape

# (4119, 21)

Let’s look closely at the data and its structure. We will not go in depth in the exploratory data analysis step. However, we will see how data looks like and perform sum summary and descriptive stats.

df.isnull().sum().sum() # no NAs

# 0

## looking at numeric variables summary stats

df.describe()

Let’s have a quick look at how the object variables are distributed between the two classes; yes and no.

## counts

df.groupby("y").size()

# y

# no 3668

# yes 451

# dtype: int64

num_cols = list(df.select_dtypes(np.number).columns)

print(num_cols)

# ['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed']

obj_cols = list(df.select_dtypes(object).drop("y", axis = 1).columns)

print(obj_cols)

# ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'poutcome']

df[obj_cols + ["y"]].groupby("y").agg(["nunique"])

# job marital education default housing loan contact month day_of_week poutcome

# nunique nunique nunique nunique nunique nunique nunique nunique nunique nunique

# y

# no 12 4 8 3 3 3 2 10 5 3

# yes 12 4 7 2 3 3 2 10 5 3

Seems like categorical variables are equally distributed between the classes.

I know that this is so quick analysis and shallow. But EDA is out of the scope of this blog.

Feature Preprocessing

Now it is time to prepare the features for the LR model. Scaling the numer variables and one hot encode the categorical ones. We will use ColumnTransformer to apply different preprocessors on different columns and wrap everything in a pipeline.

## change classes to float

df["y"] = np.where(df["y"] == "yes", 1., 0.)

## the pipeline

scaler = Pipeline(steps = [

## there are no NAs anyways

("imputer", SimpleImputer(strategy = "median")),

("scaler", StandardScaler())

])

encoder = Pipeline(steps = [

("imputer", SimpleImputer(strategy = "constant", fill_value = "missing")),

("onehot", OneHotEncoder(handle_unknown = "ignore")),

])

preprocessor = ColumnTransformer(

transformers = [

("num", scaler, num_cols),

("cat", encoder, obj_cols)

])

pipe = Pipeline(steps = [("preprocessor", preprocessor)])

Split data into train and test and fit the pipeline on train data and transform both train and test.

X_train, X_test, y_train, y_test = train_test_split(

df.drop("y", axis = 1), df.y,

stratify = df.y,

random_state = 13,

test_size = 0.25)

X_train = pipe.fit_transform(X_train)

X_test = pipe.transform(X_test)

Reverting to the exploratory phase. A good way to visualize one hot encoded data, sparse matrices with 1s and 0s, is by using imshow(). We will look at the last contact month columns which is now is converted into several columns with 1 in the month when the contact happened. The plot will also be split between yes and no.

First let’s get the new feature names from the pipeline.

## getting feature names from the pipeline

nums = pipe["preprocessor"].transformers_[0][2]

obj = list(pipe["preprocessor"].transformers_[1][1]["onehot"].get_feature_names(obj_cols))

fnames = nums + obj

len(fnames) ## new number of columns due to one hot encoder

# 62

Let’s now visualize!

from matplotlib.colors import ListedColormap

print([i for i in obj if "month" in i])

# ['month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep']

## filter the train data on the month data

tr = X_train[:, [True if "month" in i else False for i in fnames]]

fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (15,7))

fig.suptitle("Subscription per Contact Month", fontsize = 20)

cmapmine1 = ListedColormap(["w", "r"], N = 2)

cmapmine2 = ListedColormap(["w", "b"], N = 2)

ax1.imshow(tr[y_train == 0.0], cmap = cmapmine1, interpolation = "none", extent = [3, 6, 9, 12])

ax1.set_title("Not Subscribed")

ax2.imshow(tr[y_train == 1.0], cmap = cmapmine2, interpolation = "none", extent = [3, 6, 9, 12])

ax2.set_title("Subscribed")

plt.show()

Of course, we need to sort the columns with months order and put labels so that the plot can be more readable. But it is just to quickly visualize sparse matrices with 1s and 0s.

Model Development

Now it is time to develop the model and fit it.

clf = LogisticRegression(

solver = "newton-cg", max_iter = 50, C = .1, penalty = "l2"

)

clf.fit(X_train, y_train)

# LogisticRegression(C=0.1, max_iter=50, solver='newton-cg')

Now we will look at model’s AUC and set the threshold to predict the test data.

y_pred_proba = clf.predict_proba(X_test)[:, 1]

fpr, tpr, _ = roc_curve(y_test, y_pred_proba)

roc_auc = auc(fpr, tpr)

plt.plot(fpr, tpr, ls = "--", label = "LR AUC = %0.2f" % roc_auc)

plt.plot([0,1], [0,1], c = "r", label = "No Skill AUC = 0.5")

plt.legend(loc = "lower right")

plt.ylabel("true positive rate")

plt.xlabel("false positive rate")

plt.show()

The model shows a very good AUC. Let’s now set the threshold that gives the best combination between recall and precision.

precision, recall, threshold = precision_recall_curve(

y_test, y_pred_proba)

tst_prt = pd.DataFrame({

"threshold": threshold,

"recall": recall[1:],

"precision": precision[1:]

})

tst_prt_melted = pd.melt(tst_prt, id_vars = ["threshold"],

value_vars = ["recall", "precision"])

sns.lineplot(x = "threshold", y = "value",

hue = "variable", data = tst_prt_melted)

We can spot that 0.3 can be a very good threshold. Let’s test it on test data.

y_pred = np.zeros(len(y_test))

y_pred[y_pred_proba >= 0.3] = 1.

print("Accuracy: %.2f%%" % (100 * accuracy_score(y_test, y_pred)))

print("Precision: %.2f%%" % (100 * precision_score(y_test, y_pred)))

print("Recall: %.2f%%" % (100 * recall_score(y_test, y_pred)))

# Accuracy: 91.65%

# Precision: 61.54%

# Recall: 63.72%

Great! The model is performing good. Maybe it can be enhanced, but for now let’s go and try to explain how it behaves with SHAP.

Model Explanation and Feature Importance

Introducing SHAP

From SHAP’s documentation; SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions.

In brief, aside from the math behind, this is how it works. When we pass a model and a training dataset, a base value is calculated, which is the average model output over the training dataset. Then shap values are calculated for each feature per each example. Then each feature, with its shap values, contributes to push the model output from that base value to left and right. In a binary classification model, features that push the model output above the base value contribute to the positive class. While the features contributing to negative class will push towards below the base value.

Let’s have a look at how this looks like. First we define our explainer and calculate the shap values.

explainer = shap.Explainer(clf, X_train, feature_names = np.array(fnames))

shap_values = explainer(X_test)

Now let’s visualize how this works in an example.

Individual Visualization

## we init JS once in our session

shap.initjs()

ind = np.argmax(y_test == 0)

print("actual is:", y_test.values[ind], "while pred is:", y_pred[ind])

shap.plots.force(shap_values[ind])

# actual is: 0.0 while pred is: 0.0

We can see how the shown observations (scaled) of duration, number of employees, 3 month euribor and contact via telephone = 1 push the model below the base value (-3.03) resulting in a negative example. While last contact in June not May and 1.53 scaled consumer price index tried to push to the right but couldn’t beat the blue force.

We can also look at the same graph using waterfall graph representing cumulative sum and how the shap values are added together to give the model output from the base value.

shap.plots.waterfall(shap_values[ind])

We can see the collision between the features pushing left and right until we have the output. The numbers on the left side is the actual observations in the data. While the numbers inside the graph are the shap values for each feature for this example.

Let’s look at a positive example using the same two graphs.

ind = np.argmax(y_test == 1)

print("actual is:", y_test.values[ind], "while pred is:", y_pred[ind])

shap.plots.force(shap_values[ind])

# actual is: 1.0 while pred is: 1.0

shap.plots.waterfall(shap_values[ind])

It is too obvious how values are contributing now to the positive class. We can see from the two examples that high duration contributes to positive class while low duration contributes to negative. Unlike number of employees. High nr_employed contributes to negative and low nr_employed contibutes to positive.

Collective Visualization

We saw how the force plot shows how features explain the model output. However, it is only for one observation. We now will look at the same force plot but for multiple observations at the same time.

shap.force_plot(explainer.expected_value, shap_values.values, X_test, feature_names = fnames)

This plot (interactive in the notebook) is the same as individual force plot. Just imagine multiple force plots rotated 90 degrees and added together for each example. A heatmap also can be viewed to see the effect of each feature on each example.

shap.plots.heatmap(shap_values)

The heatmap shows the shap value of each feature per each example in the data. Also, above the map, the model output per each example is shown. The small line plot going above and below the base line.

Another very useful graph is the beeswarm. It gives an overview of which features are most important for the model. It plots the shap values of every feature for every sample as the heatmap and sorts these features by the sum of its shap value magnitudes over all examples.

shap.plots.beeswarm(shap_values)

We can see that duration is the most important variable and high duration increases the probability for positive class, subscription in our example. While high number of employees decreases the probability for subscription.

We can also get the mean of the absolute shap values for each feature and plot a bar chart.

shap.plots.bar(shap_values)

Fantastic! We have seen how SHAP can help in explaining our logistic regression model with very useful visualizations. The library can explain so many models including neural networks and the project github repo has so many notebook examples.

这篇关于Explain Python Machine Learning Models with SHAP Library的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066507

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e