[C++][数据结构][AVL树]详细讲解

2024-06-16 07:44

本文主要是介绍[C++][数据结构][AVL树]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.AVL树的概念
  • 2.AVL树节点的定义
  • 3. AVL树的插入
  • 4.AVL树的旋转
    • 1.新节点插入较高左子树的左侧 -- 左左:右单旋
    • 2.新节点插入较高右子树的右侧 -- 右右:左单旋
    • 3.新节点插入较高左子树的右侧 -- 左右:先左单旋再右单旋
    • 4.新节点插入较高右子树的左侧 -- 右左:先右单旋再左单旋
  • 5.AVL树的验证
  • 6.AVL树的删除(了解)
  • 7.AVL树的性能


1.AVL树的概念

  • 二叉搜索树中,如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下,如何解决?

    • 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度
  • AVL树具有以下性质:

    • 它的左右子树都是AVL树
    • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
      • 规定:平衡因子 = 右子树的高度 - 左子树的高度
        请添加图片描述
  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树

    • 如果它有n个结点,其高度可保持在O(logN),搜索时间复杂度O(logN)

2.AVL树节点的定义

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf;  // balance factorAVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};

3. AVL树的插入

  • AVL树就是在二叉搜索树的基础上引入了平衡因子,那么AVL树的插入过程可以分为两步:
    • 按照二叉搜索树的方式插入新节点
    • 调整节点的平衡因子
  • 更新平衡因子的规则
    • 新增在右,parent->_bf++; 新增在左,parent->_bf–;
    • 更新后,parent->_bf == 1/-1
      • 说明parent插入前的平衡因子是0,左右子树高度相等
      • 插入后有一边高,parent高度变了,需要继续往上更新
    • 更新后,parent->_bf == 0
      • 说明parent插入前的平衡因子是1/-1,说明左右子树一边高一边低
      • 插入后两边一样高,插入填上了矮的那边,parent所在子树高度不变,不需要继续网上更新
    • 更新后,parent->_bf == 2/-2
      • 说明parent插入前的平衡因子是1/-1,已经达到平衡临界值
      • 插入变成2/-2,打破平衡,parent所在的子树需要旋转处理
    • 更新后,abs(parent->_bf) > 2,不可能
      • 如果存在,则说明插入前就不是AVL树,需要去检查之前操作的问题
bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// 控制平衡// 1.更新平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (abs(parent->_bf) == 1){parent = parent->_parent; // 继续向上更新cur = cur->_parent;}else if(abs(parent->_bf) == 2){// parent所在子树已经失衡,旋转调整if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else{assert(false); // 理论不会走到这}break;}else{assert(false); // 理论不会走到这}}return true;
}

4.AVL树的旋转

  • 如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化
  • 根据节点插入位置的不同,AVL树的旋转分为四种

1.新节点插入较高左子树的左侧 – 左左:右单旋

请添加图片描述

void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}Node* grandParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (grandParent->_left == parent){grandParent->_left = subL;}else{grandParent->_right = subL;}subL->_parent = grandParent;}subL->_bf = parent->_bf = 0;
}

2.新节点插入较高右子树的右侧 – 右右:左单旋

请添加图片描述

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL) // 防止subRL本来就为空,对空指针访问{subRL->_parent = parent;}// 用于判断原来的parent是否是子树Node* grandParent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (grandParent->_left == parent){grandParent->_left = subR;}else{grandParent->_right = subR;}subR->_parent = grandParent;}subR->_bf = parent->_bf = 0;
}

3.新节点插入较高左子树的右侧 – 左右:先左单旋再右单旋

请添加图片描述

  • 将双旋变成单旋后再旋转
    • 即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);subLR->_bf = 0;if (bf == 1){parent->_bf = 0;subL->_bf = -1;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;}else if (bf == 0) // 原来的树/子树只有这三个节点{parent->_bf = 0;subL->_bf = 0;}else{assert(false); // 理论不会走到这}
}

4.新节点插入较高右子树的左侧 – 右左:先右单旋再左单旋

请添加图片描述

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);subRL->_bf = 0;if (bf == 1){parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;}else if (bf == 0){parent->_bf = subR->_bf = 0;}else{assert(false); // 理论不会走到这}
}

5.AVL树的验证

  • AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
    • 验证其为二叉搜索树
      • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
    • 验证其为平衡树
      • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
      • 节点的平衡因子是否计算正确
void InOrder()
{_InOrder(_root);cout << endl;
}bool IsBalance()
{return _IsBalance(_root);
}void _InOrder(Node* root)
{if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);
}bool _IsBalance(Node* root)
{if (root == nullptr){return true;}int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);int diff = rightHeight - leftHeight;if (diff != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return abs(diff) < 2 && _IsBalance(root->_left) && _IsBalance(root->_right);
}int Height(Node* root)
{if (root == nullptr){return 0;}return max(Height(root->_left), Height(root->_right)) + 1; //统计高度为后序
}

6.AVL树的删除(了解)

  • 因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子
  • 只不过与删除不同的是,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置

7.AVL树的性能

  • AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即logN
  • 但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:
    • 插入时要维护其绝对平衡,旋转的次数比较多
    • 更差的是在删除时, 有可能一直要让旋转持续到根的位置
  • 因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合

这篇关于[C++][数据结构][AVL树]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065851

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个