Java8新特性整理之CompletableFuture:组合式、异步编程(七)

2024-06-16 05:58

本文主要是介绍Java8新特性整理之CompletableFuture:组合式、异步编程(七),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用CompletableFuture构建异步应用

Future 接口的局限性

Future接口可以构建异步应用,但依然有其局限性。它很难直接表述多个Future 结果之间的依赖性。实际开发中,我们经常需要达成以下目的:

  • 将两个异步计算合并为一个——这两个异步计算之间相互独立,同时第二个又依赖于第一个的结果。
  • 等待 Future 集合中的所有任务都完成。
  • 仅等待 Future集合中最快结束的任务完成(有可能因为它们试图通过不同的方式计算同一个值),并返回它的结果。
  • 通过编程方式完成一个Future任务的执行(即以手工设定异步操作结果的方式)。
  • 应对 Future 的完成事件(即当 Future 的完成事件发生时会收到通知,并能使用 Future 计算的结果进行下一步的操作,不只是简单地阻塞等待操作的结果)

新的CompletableFuture类将使得这些成为可能。

CompletableFuture

JDK1.8才新加入的一个实现类CompletableFuture,实现了Future<T>, CompletionStage<T>两个接口。

当一个Future可能需要显示地完成时,使用CompletionStage接口去支持完成时触发的函数和操作。

当两个及以上线程同时尝试完成、异常完成、取消一个CompletableFuture时,只有一个能成功。

CompletableFuture实现了CompletionStage接口的如下策略:

  1. 为了完成当前的CompletableFuture接口或者其他完成方法的回调函数的线程,提供了非异步的完成操作。

  2. 没有显式入参Executor的所有async方法都使用ForkJoinPool.commonPool()为了简化监视、调试和跟踪,所有生成的异步任务都是标记接口AsynchronousCompletionTask的实例。

  3. 所有的CompletionStage方法都是独立于其他共有方法实现的,因此一个方法的行为不会受到子类中其他方法的覆盖。

CompletableFuture实现了Future接口的如下策略:

  1. CompletableFuture无法直接控制完成,所以cancel操作被视为是另一种异常完成形式。方法isCompletedExceptionally可以用来确定一个CompletableFuture是否以任何异常的方式完成。

  2. 以一个CompletionException为例,方法get()get(long,TimeUnit)抛出一个ExecutionException,对应CompletionException。为了在大多数上下文中简化用法,这个类还定义了方法join()getNow,而不是直接在这些情况中直接抛出CompletionException

CompletableFuture中4个异步执行任务静态方法:

public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {return asyncSupplyStage(asyncPool, supplier);}public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,Executor executor) {return asyncSupplyStage(screenExecutor(executor), supplier);
}public static CompletableFuture<Void> runAsync(Runnable runnable) {return asyncRunStage(asyncPool, runnable);
}public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor) {return asyncRunStage(screenExecutor(executor), runnable);
}

其中supplyAsync用于有返回值的任务,runAsync则用于没有返回值的任务。Executor参数可以手动指定线程池,否则默认ForkJoinPool.commonPool()系统级公共线程池,
注意:这些线程都是Daemon线程,主线程结束Daemon线程不结束,只有JVM关闭时,生命周期终止

异常处理

CompletableFuture实现了Future接口,因此你可以像Future那样使用它。

其次,CompletableFuture并非一定要交给线程池执行才能实现异步,你可以像下面这样实现异步运行:

@Test
public void test1() throws ExecutionException, InterruptedException {CompletableFuture<String> completableFuture = new CompletableFuture<>();new Thread(() -> {// 模拟执行耗时任务System.out.println("task doing...");try {Thread.sleep(3000);} catch (InterruptedException e) {e.printStackTrace();}// 告诉completableFuture任务已经完成completableFuture.complete("ok");}).start();// 获取任务结果,如果没有完成会一直阻塞等待String result = completableFuture.get();System.out.println("计算结果:" + result);
}

如果没有意外,上面发的代码工作得很正常。但是,如果任务执行过程中产生了异常会怎样呢?

非常不幸,这种情况下你会得到一个相当糟糕的结果:异常会被限制在执行任务的线程的范围内,最终会杀死该线程,而这会导致等待get方法返回结果的线程永久地被阻塞。

客户端可以使用重载版本的get 方法,它使用一个超时参数来避免发生这样的情况。这是一种值得推荐的做法,你应该尽量在你的代码中添加超时判断的逻辑,避免发生类似的问题。

使用这种方法至少能防止程序永久地等待下去,超时发生时,程序会得到通知发生了TimeoutException 。不过,也因为如此,你不能确定执行任务的线程内到底发生了什么问题。

为了能获取任务线程内发生的异常,你需要使用
CompletableFuture的completeExceptionally方法将导致CompletableFuture内发生问题的异常抛出。这样,当执行任务发生异常时,调用get()方法的线程将会收到一个 ExecutionException异常,该异常接收了一个包含失败原因的Exception 参数。

@Test
public void test2() throws ExecutionException, InterruptedException {CompletableFuture<String> completableFuture = new CompletableFuture<>();new Thread(() -> {// 模拟执行耗时任务System.out.println("task doing...");try {Thread.sleep(3000);int i = 1/0;} catch (Exception e) {// 告诉completableFuture任务发生异常了completableFuture.completeExceptionally(e);}// 告诉completableFuture任务已经完成completableFuture.complete("ok");}).start();// 获取任务结果,如果没有完成会一直阻塞等待String result = completableFuture.get();System.out.println("计算结果:" + result);
}

举个栗子

JDK CompletableFuture 自带多任务组合方法allOf和anyOf

allOf是等待所有任务完成,构造后CompletableFuture完成

anyOf是只要有一个任务完成,构造后CompletableFuture就完成

其它方法的中文解释查看此文☞ https://www.jianshu.com/p/6f3ee90ab7d3

public class CompletableFutureDemo {@Testpublic void test1(){long start = System.currentTimeMillis();// 结果集List<String> list = new ArrayList<>();ExecutorService executorService = Executors.newFixedThreadPool(10);List<Integer> taskList = Arrays.asList(2, 1, 3, 4, 5, 6, 7, 8, 9, 10);// 全流式处理转换成CompletableFuture[]+组装成一个无返回值CompletableFuture,join等待执行完毕。返回结果whenComplete获取CompletableFuture[] cfs = taskList.stream().map(integer -> CompletableFuture.supplyAsync(() -> calc(integer), executorService).thenApply(h->Integer.toString(h)).whenComplete((s, e) -> {System.out.println("任务"+s+"完成!result="+s+",异常 e="+e+","+new Date());list.add(s);})).toArray(CompletableFuture[]::new);// 封装后无返回值,必须自己whenComplete()获取CompletableFuture.allOf(cfs).join();System.out.println("list="+list+",耗时="+(System.currentTimeMillis()-start));}public int calc(Integer i) {try {if (i == 1) {Thread.sleep(3000);//任务1耗时3秒} else if (i == 5) {Thread.sleep(5000);//任务5耗时5秒} else {Thread.sleep(1000);//其它任务耗时1秒}System.out.println("task线程:" + Thread.currentThread().getName()+ "任务i=" + i + ",完成!+" + new Date());} catch (InterruptedException e) {e.printStackTrace();}return i;}
}

常用多线程并发,取结果归集的几种实现方案

描述FutureFutureTaskCompletionServiceCompletableFuture
原理Future接口接口RunnableFuture的唯一实现类,RunnableFuture接口继承自Future+Runnable内部通过阻塞队列+FutureTask接口JDK8实现了Future, CompletionStage两个接口
多任务并发执行支持支持支持支持
获取任务结果的顺序按照提交顺序获取结果未知支持任务完成的先后顺序支持任务完成的先后顺序
异常捕捉自己捕捉自己捕捉自己捕捉原生API支持,返回每个任务的异常
建议CPU高速轮询,耗资源,可以使用,但不推荐功能不对口,并发任务这一块多套一层,不推荐使用推荐使用,没有JDK8CompletableFuture之前最好的方案,没有质疑API极端丰富,配合流式编程,速度飞起,推荐使用!

上表来源:https://www.cnblogs.com/dennyzhangdd/p/7010972.html

参考:

https://www.jianshu.com/p/4897ccdcb278

https://www.cnblogs.com/dennyzhangdd/p/7010972.html

这篇关于Java8新特性整理之CompletableFuture:组合式、异步编程(七)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065641

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1