基于负相关误差函数的4集成BP神经网络matlab建模与仿真

2024-06-16 05:36

本文主要是介绍基于负相关误差函数的4集成BP神经网络matlab建模与仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

................................................................
while(Index<=Max_iteration)   Indexjj=1;     error2 = zeros(Len,KER);while(jj<=Len)         for k=1:No;d(k)=T(jj);  endfor i=1:NI;x(i)=P(jj,i);end%集成多个BP神经网络for bpj = 1:KER      for j=1:Nh%BP前向            net=0;              for i=1:NI                net=net+x(i)*W0(i,j,bpj); %加权和∑X(i)V(i)            endy(j)=1/(1+exp(-net));               endfor k=1:No             net=0;              for j=1:Nh                  net=net+y(j)*W(j,k,bpj);             end%输出值o(k)=1/(1+exp(-net));              endRRR(jj,1) = round(o);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%errortmp=0.0;         for k=1:No              errortmp=errortmp+(d(k)-(o(k)))^2;%传统的误差计算方法end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%error2(jj,bpj)=0.5*errortmp/No;         for k=1:No%BP反向计算          yitao(k)=(d(k)-o(k))*o(k)*(1-o(k));%偏导      endfor j=1:Nh         tem=0.0;         for k=1:No             tem=tem+yitao(k)*W(j,k,bpj);       endyitay(j)=tem*y(j)*(1-y(j));%偏导    endfor j=1:Nh%权值更新         for k=1:No              deltaW(j,k,bpj) = Learning_Rate*yitao(k)*y(j);            W(j,k,bpj)      = W(j,k,bpj)+deltaW(j,k,bpj);            endendfor i=1:NI         for j=1:Nh              deltaW0(i,j,bpj) = Learning_Rate*yitay(j)*x(i);            W0(i,j,bpj)      = W0(i,j,bpj)+deltaW0(i,j,bpj);             endendendjj=jj+1; end%BP训练结束     error = sum(mean(error2));  Index = Index+1;ERR   = [ERR,error]; 
end
.........................................................
05_035m

4.算法理论概述

       基于负相关误差函数(Negative Correlation Learning, NCL)的集成学习方法应用于BP(Backpropagation)神经网络,旨在通过训练多个相互独立且在预测上具有负相关的模型,提高整体模型的泛化能力和稳定性。这种方法结合了神经网络的强大表达能力和集成学习的思想,以提高预测精度和鲁棒性。

       集成学习是机器学习领域的一种重要策略,它通过组合多个弱学习器来构建一个强学习器。NCL在集成学习框架下的应用,特别是与BP神经网络结合时,其核心思想是促使每个神经网络模型学习到不同的模式,从而减少整体模型之间的错误相关性。当模型间的预测错误呈现负相关时,即一个模型在某些样本上犯错时,其他模型能在这些样本上正确预测,整个集成系统的错误率会显著降低。

      负相关误差函数的公式:

       可知,当λ=0时,后面的惩罚项为0,相当于是网络单独训练,也就是传统的集成方式,当λ取大于0的值时为负相关集成,所以,以下对λ取值分别为0和其他值进行比较.

       基于负相关误差函数的集成BP神经网络,通过鼓励模型间预测的负相关性,有效提升了模型的泛化能力。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于负相关误差函数的4集成BP神经网络matlab建模与仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065583

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

springboot2.1.3 hystrix集成及hystrix-dashboard监控详解

《springboot2.1.3hystrix集成及hystrix-dashboard监控详解》Hystrix是Netflix开源的微服务容错工具,通过线程池隔离和熔断机制防止服务崩溃,支持降级、监... 目录Hystrix是Netflix开源技术www.chinasem.cn栈中的又一员猛将Hystrix熔

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制