系数矩阵的行压缩存储(CSR/CRS), 列压缩存储CCS

2024-06-16 03:48

本文主要是介绍系数矩阵的行压缩存储(CSR/CRS), 列压缩存储CCS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:http://blog.csdn.net/bigpiglet_zju/article/details/20791881

稀疏矩阵(Sparse Matrix)由于有很多0,为了节省空间,一般压缩存储。通常只需要保存非零元素及其位置即可。


        下面介绍Compressed Row Storage(CRS)格式或者称为 Compressed sparse row(CSR)格式,由名称可见,该格式是把行的信息压缩存储了,只显式保留每行第一个非零元素的位置,具体在例子中可以看到。

        假设有稀疏矩阵A,我们需要创建三个数组,一个浮点型数组val,另外两个为整型数组(col_ind, row_ptr)。

        val数组,大小为矩阵A的非零元素的个数,保存矩阵A的非零元素(按从上往下,从左往右的行遍历方式访问元素)。

        col_ind数组,和val数组一样,大小为矩阵A的非零元素的个数,保存val数组中元素的列索引。其数学表示为:

如果 val(k)=a(i,j),则 col_ind(k)=j

        row_ptr数组,大小为矩阵A的行数,保存矩阵A的每行第一个非零元素在val中的索引。其数学表示为:

如果 val(k)=a(i,j),则 row_ptr(i)<= k < row_ptr(i+1)

        按照惯例,一般定义row_ptr(n+1) = nnz + 1,而nnz是A中非零元素的个数。

        该方法可以节省很多空间,只需要2nnz + n + 1个存储单元,而不是n的平方个单元。

      //ps:这的n好像指的是:方阵的行/列

    

        看一个例子:

        矩阵A定义为



        其CSR格式由三个数组定义为:


        注意其中row_ptr数组的最后一个元素为20(19+1),因为矩阵A的非零元素为19。

Compressed Column Storage

Analogous to CRS, there is compressed column storage (CCS), which is also called the Harwell-Boeing sparse matrix format [139]. The CCS format is identical to the CRS format except that the columns of $A$ are stored (traversed) instead of the rows. In other words, the CCS format is the CRS format for $A^T$.

The CCS format is specified by the $3$ arrays {valrow_indcol_ptr}, where row_ind stores the row indices of each nonzero, and col_ptr stores the index of the elements in val which start a column of $A$. The CCS format for the matrix $A$ in (10.1) is given by

val103397848$\cdots$ 92313-1  
row_ind12423563$\cdots$ 56256  


col_ptr14810131720


参考:
1. Compressed Row Storage
http://web.eecs.utk.edu/~dongarra/etemplates/node373.html

2.  Compressed Column Storage

http://www.netlib.org/utk/people/JackDongarra/etemplates/node374.html

3. Sparse Matrix Compression Formats
http://www.cs.colostate.edu/~mroberts/toolbox/c++/sparseMatrix/sparse_matrix_compression.html


这篇关于系数矩阵的行压缩存储(CSR/CRS), 列压缩存储CCS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1065397

相关文章

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

SpringBoot项目中Redis存储Session对象序列化处理

《SpringBoot项目中Redis存储Session对象序列化处理》在SpringBoot项目中使用Redis存储Session时,对象的序列化和反序列化是关键步骤,下面我们就来讲讲如何在Spri... 目录一、为什么需要序列化处理二、Spring Boot 集成 Redis 存储 Session2.1

基于MongoDB实现文件的分布式存储

《基于MongoDB实现文件的分布式存储》分布式文件存储的方案有很多,今天分享一个基于mongodb数据库来实现文件的存储,mongodb支持分布式部署,以此来实现文件的分布式存储,需要的朋友可以参考... 目录一、引言二、GridFS 原理剖析三、Spring Boot 集成 GridFS3.1 添加依赖

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1