训练营第三十八天 | 309.最佳买卖股票时机含冷冻期动态规划系列七总结714.买卖股票的最佳时机含手续费股票问题总结篇!

本文主要是介绍训练营第三十八天 | 309.最佳买卖股票时机含冷冻期动态规划系列七总结714.买卖股票的最佳时机含手续费股票问题总结篇!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

309.最佳买卖股票时机含冷冻期

力扣题目链接(opens new window)

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

示例:

  • 输入: [1,2,3,0,2]
  • 输出: 3
  • 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期。所以在上一题的基础上多加一个冷冻期的状态即可。

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<int> buy(len, INT_MIN);vector<int> sell(len, 0);vector<int> frozen(len, 0);buy[0] = -prices[0]; // 初始买入状态的收益sell[0] = 0;         // 初始卖出状态的收益frozen[0] = 0;        // 初始冷冻期的收益for (int i = 1; i < len; i++) {buy[i] = max(buy[i - 1], frozen[i - 1] - prices[i]); // 买入状态sell[i] = max(sell[i - 1], buy[i - 1] + prices[i]); // 卖出状态frozen[i] = max(frozen[i - 1], sell[i - 1]);          // 冷冻期状态}return max(sell[len - 1], frozen[len - 1]); // 最后的最大收益应从卖出和冷冻期中选}
};

动规五部曲:

  1. 确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。

具体可以区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四
  1. 确定递推公式

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
  1. dp数组如何初始化

这里主要讨论一下第0天如何初始化。

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。

保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。

如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。

今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

  1. 确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();if (n == 0) return 0;vector<vector<int>> dp(n, vector<int>(4, 0));dp[0][0] -= prices[0]; // 持股票for (int i = 1; i < n; i++) {dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];}return max(dp[n - 1][3], max(dp[n - 1][1], dp[n - 1][2]));}
};

动态规划系列七总结

动态规划:买卖股票的最佳时机II (opens new window)中股票可以买卖多次了!

这也是和121. 买卖股票的最佳时机 (opens new window)的唯一区别(注意只有一只股票,所以再次购买前要出售掉之前的股票)

重点在于递推公式的不同。

dp数组的含义:

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金

递推公式:

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

本题和121. 买卖股票的最佳时机 (opens new window)的代码几乎一样,唯一的区别在:

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

动态规划:买卖股票的最佳时机IV (opens new window)最多可以完成 k 笔交易。

相对于上一道动态规划:123.买卖股票的最佳时机III (opens new window),本题需要通过前两次的交易,来类比前k次的交易

  1. 确定dp数组以及下标的含义

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • .....

除了0以外,偶数就是卖出,奇数就是买入

  1. 确定递推公式

dp[i][1],表示的是第i天,买入股票的状态,

for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

动态规划:123.买卖股票的最佳时机III (opens new window)最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

  1. dp数组如何初始化

dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为奇数是买、偶数是卖的状态

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

动态规划:最佳买卖股票时机含冷冻期 (opens new window)尽可能地完成更多的交易(多次买卖一支股票),但有冷冻期,冷冻期为1天

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期

本题则需要第三个状态:不持有股票(冷冻期)的最多现金

714.买卖股票的最佳时机含手续费

力扣题目链接(opens new window)

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

  • 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
  • 输出: 8

解释: 能够达到的最大利润:

  • 在此处买入 prices[0] = 1
  • 在此处卖出 prices[3] = 8
  • 在此处买入 prices[4] = 4
  • 在此处卖出 prices[5] = 9
  • 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

注意:

  • 0 < prices.length <= 50000.
  • 0 < prices[i] < 50000.
  • 0 <= fee < 50000.

思路

本题贪心解法:贪心算法:买卖股票的最佳时机含手续费(opens new window)

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

唯一差别在于递推公式部分.

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int len = prices.size();vector<int> buy(len, INT_MIN);vector<int> sell(len, 0);buy[0] = -prices[0]; sell[0] = 0;for (int i = 1; i < len; i++) {buy[i] = max(buy[i - 1], sell[i - 1] - prices[i]);sell[i] = max(sell[i - 1], buy[i - 1] + prices[i] - fee);}           return sell[len - 1];}
};

股票问题总结篇!

股票问题总结

  • 动态规划:121.买卖股票的最佳时机(opens new window)
  • 动态规划:122.买卖股票的最佳时机II(opens new window)
  • 动态规划:123.买卖股票的最佳时机III(opens new window)
  • 动态规划:188.买卖股票的最佳时机IV(opens new window)
  • 动态规划:309.最佳买卖股票时机含冷冻期(opens new window)
  • 动态规划:714.买卖股票的最佳时机含手续费(opens new window)

#卖股票的最佳时机

动态规划:121.买卖股票的最佳时机 (opens new window),股票只能买卖一次,问最大利润

// 版本一
class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 0) return 0;vector<vector<int>> dp(len, vector<int>(2));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[len - 1][1];}
};

#买卖股票的最佳时机II

动态规划:122.买卖股票的最佳时机II (opens new window)可以多次买卖股票,问最大收益。

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<int> buy(len, INT_MIN);vector<int> sell(len, 0);buy[0] = -prices[0];sell[0] = 0;for(int i = 1; i < len; i++) {buy[i] = max(buy[i - 1], sell[i - 1] - prices[i]);sell[i] = max(sell[i - 1], buy[i - 1] + prices[i]);}return sell[len - 1];}
};

#买卖股票的最佳时机III

动态规划:123.买卖股票的最佳时机III (opens new window)最多买卖两次,问最大收益。

// 版本二
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};

#买卖股票的最佳时机IV

动态规划:188.买卖股票的最佳时机IV (opens new window)最多买卖k笔交易,问最大收益。

class Solution {
public:int maxProfit(int k, vector<int>& prices) {       vector<int> buy(k, INT_MIN);vector<int> sell(k, 0);    for(int price : prices) {buy[0] = max(buy[0], -price);sell[0] = max(sell[0], buy[0] + price);   for (int i = 1; i < k; i++) {buy[i] = max(buy[i], sell[i - 1] - price);sell[i] = max(sell[i], buy[i] + price);}}return sell[k - 1];}
};

#最佳买卖股票时机含冷冻期

动态规划:309.最佳买卖股票时机含冷冻期 (opens new window)可以多次买卖但每次卖出有冷冻期1天。

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期。

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<int> buy(len, INT_MIN);vector<int> sell(len, 0);vector<int> frozen(len, 0);buy[0] = -prices[0]; // 初始买入状态的收益sell[0] = 0;         // 初始卖出状态的收益frozen[0] = 0;        // 初始冷冻期的收益for (int i = 1; i < len; i++) {buy[i] = max(buy[i - 1], frozen[i - 1] - prices[i]); // 买入状态sell[i] = max(sell[i - 1], buy[i - 1] + prices[i]); // 卖出状态frozen[i] = max(frozen[i - 1], sell[i - 1]);          // 冷冻期状态}return max(sell[len - 1], frozen[len - 1]); // 最后的最大收益应从卖出和冷冻期中选}
};

#买卖股票的最佳时机含手续费

动态规划:714.买卖股票的最佳时机含手续费 (opens new window)可以多次买卖,但每次有手续费。

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int len = prices.size();vector<int> buy(len, INT_MIN);vector<int> sell(len, 0);buy[0] = -prices[0]; sell[0] = 0;for (int i = 1; i < len; i++) {buy[i] = max(buy[i - 1], sell[i - 1] - prices[i]);sell[i] = max(sell[i - 1], buy[i - 1] + prices[i] - fee);}           return sell[len - 1];}
};

这篇关于训练营第三十八天 | 309.最佳买卖股票时机含冷冻期动态规划系列七总结714.买卖股票的最佳时机含手续费股票问题总结篇!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064591

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe