Qwen-Agent:Qwen2加持,强大的多代理框架 - 函数调用、代码解释器以及 RAG!

本文主要是介绍Qwen-Agent:Qwen2加持,强大的多代理框架 - 函数调用、代码解释器以及 RAG!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cover_image
✨点击这里✨:🚀原文链接:(更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号!)

Qwen-Agent:Qwen2加持,强大的多代理框架 - 函数调用、代码解释器以及 RAG!

🌟 Qwen-Agent是一个开发框架。开发者可基于该框架开发 Agent应用
,充分利用基于通义千问模型(Qwen)的指令遵循、工具使用、规划、记忆能力。该项目也提供了浏览器助手、代码解释器、自定义助手等示例应用。

Github:https://github.com/QwenLM/Qwen-Agent

Hello,大家好,我是Aitrainee,

阿里巴巴最近发布了新的 Qwen 2 大型语言模型和升级后的 Qwen Agent 框架,这个框架集成了 Qwen 2 模型,支持
函数调用、代码解释、RAG(检索增强生成) 等功能,还包含了 Chrome 扩展。Qwen Agent 能处理从 8K 到 100 万
tokens 的文档,性能超越了 RAG 和原生长上下文模型,并用于生成训练新长上下文模型的数据。

Qwen Agent 框架可用于创建复杂的 AI 代理,展示了其强大的任务处理能力。新框架采用四步法开发:初始模型开发、代理开发、数据综合和模型微调。通过
RAG 算法处理长文档,将文档分成小块,保留最相关的部分,从而提升上下文处理能力。

具体步骤包括检索增强生成、逐块阅读和逐步推理等三层复杂性,使用 RAG 算法处理并优化文档片段,以便提供准确的上下文理解和生成能力。实验表明,Qwen
Agent 能显著提升模型的上下文长度和性能。

建议观看之前的视频以获取更多实用示例,Qwen 2 是目前最强大的开源语言模型之一,推荐尝试使用。框架操作简便,有详细教程帮助用户快速上手。

这一框架的目标是创建复杂的AI代理,其表现优于其他代理框架。 下面视频
展示了如何利用Qwen-2模型及其8K上下文窗口理解包含百万级词汇的文档,这比RAG和原生长上下文模型表现更好。

Qwen-Agent 开发步骤

  1. 1. 初始模型 :从8K上下文聊天模型开始。

  2. 2. 代理开发 :使用模型开发强大的代理,处理百万上下文。

  3. 3. 数据合成 :合成细化数据,进行自动过滤确保质量。

  4. 4. 模型微调 :利用合成数据微调预训练模型,最终得到强大的聊天机器人。

分层复杂性

Qwen-Agent在构建过程中分为三层复杂性,每层在前一层基础上构建:

  1. 1. 增强型信息检索生成(RAG) :使用RAG算法将上下文分成不超过512词的块,仅保留最相关的内容。

  2. 2. 逐块阅读 :采用暴力策略,每512词块检查相关性,保留最相关的内容生成答案。

  3. 3. 逐步推理 :使用多跳推理回答复杂问题,采用工具调用代理解决复杂查询。

下面提供官方的 文档介绍、相关资源、部署教程 等,进一步支撑你的行动,以提升本文的帮助力。

![](https://res.wx.qq.com/t/wx_fed/we-

emoji/res/v1.3.10/assets/newemoji/Party.png) 开始上手

安装

  • • 安装稳定的版本:

    pip install -U qwen-agent

  • • 或者,直接从源代码安装最新的版本:

    git clone https://github.com/QwenLM/Qwen-Agent.git
    cd Qwen-Agent
    pip install -e ./

如需使用内置GUI支持,请安装以下可选依赖项:

pip install -U "gradio>=4.0" "modelscope-studio>=0.2.1"

准备:模型服务

Qwen-Agent支持接入阿里云 DashScope 服务提供的Qwen模型服务,也支持通过OpenAI API方式接入开源的Qwen模型服务。

  • • 如果希望接入DashScope提供的模型服务,只需配置相应的环境变量 DASHSCOPE_API_KEY 为您的DashScope API Key。

  • • 或者,如果您希望部署并使用您自己的模型服务,请按照Qwen2的README中提供的指导进行操作,以部署一个兼容OpenAI接口协议的API服务。具体来说,请参阅 vLLM 一节了解高并发的GPU部署方式,或者查看 Ollama 一节了解本地CPU(+GPU)部署。

快速开发

框架提供了大模型(LLM,继承自 class BaseChatModel ,并提供了 Function Calling
功能)和工具(Tool,继承自 class BaseTool )等原子组件,也提供了智能体(Agent)等高级抽象组件(继承自 class Agent )。

以下示例演示了如何增加自定义工具,并快速开发一个带有设定、知识库和工具使用能力的智能体:

import pprint  
import urllib.parse  
import json5  
from qwen_agent.agents import Assistant  
from qwen_agent.tools.base import BaseTool, register_tool  # 步骤 1(可选):添加一个名为 `my_image_gen` 的自定义工具。  
@register_tool('my_image_gen')  
class MyImageGen(BaseTool):  # `description` 用于告诉智能体该工具的功能。  description = 'AI 绘画(图像生成)服务,输入文本描述,返回基于文本信息绘制的图像 URL。'  # `parameters` 告诉智能体该工具有哪些输入参数。  parameters = [{  'name': 'prompt',  'type': 'string',  'description': '期望的图像内容的详细描述',  'required': True  }]  def call(self, params: str, **kwargs) -> str:  # `params` 是由 LLM 智能体生成的参数。  prompt = json5.loads(params)['prompt']  prompt = urllib.parse.quote(prompt)  return json5.dumps(  {'image_url': f'https://image.pollinations.ai/prompt/{prompt}'},  ensure_ascii=False)  # 步骤 2:配置您所使用的 LLM。  
llm_cfg = {  # 使用 DashScope 提供的模型服务:  'model': 'qwen-max',  'model_server': 'dashscope',  # 'api_key': 'YOUR_DASHSCOPE_API_KEY',  # 如果这里没有设置 'api_key',它将读取 `DASHSCOPE_API_KEY` 环境变量。  # 使用与 OpenAI API 兼容的模型服务,例如 vLLM 或 Ollama:  # 'model': 'Qwen2-7B-Chat',  # 'model_server': 'http://localhost:8000/v1',  # base_url,也称为 api_base  # 'api_key': 'EMPTY',  # (可选) LLM 的超参数:  'generate_cfg': {  'top_p': 0.8  }  
}  # 步骤 3:创建一个智能体。这里我们以 `Assistant` 智能体为例,它能够使用工具并读取文件。  
system_instruction = '''你是一个乐于助人的AI助手。  
在收到用户的请求后,你应该:  
- 首先绘制一幅图像,得到图像的url,  
- 然后运行代码`request.get`以下载该图像的url,  
- 最后从给定的文档中选择一个图像操作进行图像处理。  
用 `plt.show()` 展示图像。  
你总是用中文回复用户。'''  
tools = ['my_image_gen', 'code_interpreter']  # `code_interpreter` 是框架自带的工具,用于执行代码。  
files = ['./examples/resource/doc.pdf']  # 给智能体一个 PDF 文件阅读。  
bot = Assistant(llm=llm_cfg,  system_message=system_instruction,  function_list=tools,  files=files)  # 步骤 4:作为聊天机器人运行智能体。  
messages = []  # 这里储存聊天历史。  
while True:  # 例如,输入请求 "绘制一只狗并将其旋转 90 度"。  query = input('用户请求: ')  # 将用户请求添加到聊天历史。  messages.append({'role': 'user', 'content': query})  response = []  for response in bot.run(messages=messages):  # 流式输出。  print('机器人回应:')  pprint.pprint(response, indent=2)  # 将机器人的回应添加到聊天历史。  messages.extend(response)

除了使用框架自带的智能体实现(如 class Assistant ),您也可以通过继承 class Agent
来自行开发您的智能体实现。更多使用示例,请参阅 examples 目录。

FAQ

支持函数调用(也称为工具调用)吗?

支持,LLM类提供了 函数调用 的支持。此外,一些Agent类如FnCallAgent和ReActChat也是基于函数调用功能构建的。

如何让AI基于超长文档进行问答?

我们已发布了一个 快速的RAG解决方案 ,以及一个虽运行成本较高但 准确度较高的智能体
,用于在超长文档中进行问答。它们在两个具有挑战性的基准测试中表现出色,超越了原生的长上下文模型,同时更加高效,并在涉及100万字词上下文的“大海捞针”式单针查询压力测试中表现完美。欲了解技术细节,请参阅
博客 。

应用:BrowserQwen

BrowserQwen 是一款基于 Qwen-Agent 构建的浏览器助手。如需了解详情,请参阅其 文档 。

文档:https://pypi.org/project/qwen-agent/

博客:https://qwenlm.github.io/blog/qwen-agent

知音难求,自我修炼亦艰

抓住前沿技术的机遇,与我们一起成为创新的超级个体

(把握AIGC时代的个人力量)

**
**

** 点这里 👇 关注我,记得标星哦~ **

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

预览时标签不可点

微信扫一扫
关注该公众号

轻触阅读原文

AI进修生



收藏

这篇关于Qwen-Agent:Qwen2加持,强大的多代理框架 - 函数调用、代码解释器以及 RAG!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1064308

相关文章

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪