Kaggle-Camera_Model_Identification 比赛记录总结[19/582(Top 4%)]

2024-06-15 18:48

本文主要是介绍Kaggle-Camera_Model_Identification 比赛记录总结[19/582(Top 4%)],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇博客记录自己在这次kaggle比赛中做的工作。成绩:19/582(Top 4%)

Kaggle比赛地址

我的代码github地址

这次比赛是给出10个相机拍摄的照片,然后给出测试图片,区分是哪个相机拍摄的。训练集中每类照片数量相同,每类都是由同一个手机拍摄的照片。测试集中,每类的照片都是来自另外一个手机,一半的图片可能被用了八种可能的操作。

总结:

1. 更多的数据。一开始只用了kaggle提供的数据,数据比较少,但是很平衡,每类只有275张,按照4:1的概率分了训练集和val集,训练集中每张图片都使用8种操作进行了data augmentation,一开始val集没有进行augmentation,所以训练的时候test准确率都特别高,差不多到1了,借鉴的意义不大了,后来对val集也进行了data aumentation,试图减小test与val之间的gap,训练的时候val的准确率到达0.98。只使用kaggle的数据时,训练得到的模型并不理想。后来,有人在Discussion分享了更多的数据,楼主找到了更多的数据,并跳出了其中与kaggle提供的数据具有相同分辨率的图片,但是由于找到的motox的图片与kaggle提供的不完全相同,所以楼主建议不用,这样数据量提升了,但是数据不平衡了,下载了这些数据之后,同样进行了data augmentation,数据量扩充到了六万多,使用这些数据训练之后,效果提升的很明显,但是数据不均衡导致model对motox的识别错误率更高,所以尝试增加motox的数据量。使用同一个博主下另外一个人提供的motox的数据,增加了motox的数据之后训练更稳定了,得到的模型比之前更好了,单个模型single crop的结果可以稳定在0.964。在数据方面,还有的问题就是没有分交叉验证集,一直保持着同一个验证集,不同模型使用完全一样的数据进行训练,模型多样性上有所缺失。

2.尝试不同的模型。使用imagenet预先训练的模型进行finetune。尝试了的模型有inceptionResnetV2、SeResneXt50、resnet50、resnet101,一开始调整参数,对于每个模型都要保证学的很好。因为数据集的原因,每次添加训练数据都需要重新训练模型,这样就重复训练了模型,花费了不少的时间。尝试了简单的调整网络结构,比如添加fc layer,设置dropout。

3.TTA,Test Time Augmentation。就是测试时的时候一张图片进行多次测试,然后得到的概率进行平均。我这里使用的同一张照片进行5次crop(四个角和center),之后mirror,也就是一张图片预测10次,最后将10次预测的结果平均。使用multi crop测试,准确率上升了0.01-0.15。

4.Ensemble。尝试了多种ensemble的方式,包括简单的对多个model预测的结果进行平均、从pooling抽取特征,重新训练fc或者使用xgb来进行分类、根据各个模型对训练数据的预测正确情况,给每个model对每类预测的结果加个权重等。从结果上看,ensemble还是有些许提升的,但是在比赛时,有的ensemble方法在public score上并没有体现出来,最终没有选择,还是比较可惜的。

5.结果分析:数据量要多,质量需要高,数据多了之后可以做更多的尝试,或者要学会利用好数据,比如val集的设置,这个很关键,这个才能比较靠谱的验证模型预测的情况,public score毕竟给出的只有小数据集的预测结果,private跟public可能有比较大的差异。设置交叉验证集,可以使用不同的数据对模型进行训练。在这次比赛中,几个成绩不错的队伍使用了pseudo-labeling的方法,给模型带来了些许的提升。还需要学习多种ensemble的方法,比如stack、blending。比赛过程中,最好成绩是第二,在前三呆了很久,最后却掉出了金牌区,还是有遗憾的吧,但是这次比赛投入的时间精力都很多,做的工作也算是比较完整了,能想到的每一步都做了尝试,虽然有些没有work。还是需要多多积累,有些方法必须用了,听说了才知道,这也是比赛中才能学到的吧。

pseudo-labeling:

第一步:使用标签数据训练模型

第二步:使用训练的模型为不加标签的数据预测标签

第三步:同时使用pseudo和标签数据集重新训练模型

在第三步中训练的最终模型用于对测试数据的最终预测。


以下是这次比赛过程中自己记录的一些东西。

  1. 处理了训练数据,traing: validation = 4:1

测试数据 将tif转为jpgquality=95(resnet50_7500 使用tif测试的效果好于jpg)

由于测试图片中,差不多一半的图片可能进行了八种(给出)操作之中的一种操作,所以对

每个测试图片都进行了这八种操作,相关于做了data augmentation (*9)(这样的话,原图与进行操作的图之间的比例变为1:8,这样的样本不均衡会有影响吗?)

有人在Discussion中给出了给多的数据,但是moto x的数据来自老的手机型号,所以没有使用。同样对获得数据进行了八种操作的扩充,得到了总共大概60k的训练数据。

后来由于数据不均衡(motox数据比其他种类的少)导致了

 

  1. Finetune resnet50 caffemodel

单个model差不多到0.85

(caffe to sensenet:data后和fc前加gather,修改conv,修改BN,删除BN下的scale

  1. crop_size = 224 所有图片用于训练
  2. Crop_size = 224 train & val
  3. Add FC layer

使用TrainAug2-2单个model可达0.964,multicrop可以到0.971

 

   3.  官方caffe显示lossaccuracy

caffe-master/tools/extra目录里的extract_seconds.py,plot_training_log.py.example, parse_log.sh

 

    4. Finetune inception V4

一开始忘了把BN的global_statue改掉,训了一段发现效果一般停了,改了prototxt

单个model目前最高(0.870)

 

  1.  Finetune inceptionResNetV2

单个model目前最高(0.893)(incepResV2_AddFC_4)

A.增加了第一阶段训练时间

B.增加fc layer(256->10),扩大了fc layers中的lr_mult

数据扩充之后,训练了inceptionResnetV2_AddFC,目前单个模型最高0.948

训练参数:

lr_policy:"multistep"

base_lr:0.01

gamma:0.2

stepvalue:20000

stepvalue:38000

stepvalue:45000

stepvalue:50000

stepvalue:55000

max_iter:60000

momentum:0.9

weight_decay:0.0005

 

stepvalue:85000

stepvalue:115000

stepvalue:145000

stepvalue:165000

stepvalue:175000

max_iter:185000

目前单个模型最高0.962inceptionResnetV2_aug_AddFC4_185000(dp=0.4,dp由0.2改为了0.4)

 

更新:

inceptionResnetV2单个模型最高0.964inceptionResnetV2_aug_164000

训练参数:

lr_policy:"multistep"

base_lr:0.01

gamma:0.2

stepvalue:68000

stepvalue:119000

stepvalue:146000

stepvalue:170000

max_iter:  190000

 

使用TrainAug2-1训练之后也达到了0.964inceptionResnetV2_aug2-1_200000

lr_policy:"multistep"

base_lr:0.01

gamma:0.2

stepvalue:70000

stepvalue:120000

stepvalue:146000

stepvalue:170000

stepvalue:190000

max_iter:200000

 

 

   6. Finetue SE-ResNeXt-50

单个model目前最高(0.871)

数据扩充之后,单个模型最高0.949SE-ResNext-50_AddFC_aug_55000

lr_policy:"multistep"

base_lr:0.01

gamma:0.2

stepvalue:20000

stepvalue:40000

stepvalue:50000

stepvalue:56000

max_iter:60000

 

使用TrainAug2_1训练,单个模型最高到0.964SE_aug2-1_200000

lr_policy:"multistep"

base_lr:0.01

gamma:0.2

stepvalue:70000

stepvalue:120000

stepvalue:146000

stepvalue:170000

stepvalue:190000

max_iter:200000

 

 

    6.Naive Ensemble

A.最终输出的概率求和然后取最大,相当于average,目前是两个model,分别是prob_0(caffe_AddFC_18000).npyprob_0(inception_ResNetV2_30000).npy如果只是简单的相加求和,发现效果并不好,但是如果把prob_0(inception_ResNetV2_30000).npy的权重改为1.5,发现稍有提升。

B.取最大,目前发现效果不好

 

     7. Finetune Resnet101

目前单个模型最优为:model_209000

base_lr:0.01

gamma:0.2

stepvalue:60000

stepvalue:120000

stepvalue:150000

stepvalue:174000

stepvalue:195000

max_iter:  210000

 

Aug2_2Res101 singlemodel可以到0.957 resnet101_aug2-2_208000

base_lr:0.01

gamma:0.1

stepvalue:100000

stepvalue:150000

stepvalue:180000

stepvalue:200000

max_iter:  210000

 

最后得到了一个应该比上面记录还好的model,比赛最后一天才训练结束,提交次数限制,没有提交测试。

 

 

      8.使用val_aug分析了0.962那个model的预测结果,发现label0预测得到的结果错误率比较高,因为0数据较少,尝试对0做augmentation

分析得到的数据:

042

17

213

33

43

51

69

710

816

93

 

01980

17839

212213

34437

45625

56471

66930

78712

86993

96903

上面10行对应的是grondtruth和错误的个数,下面10行为对应label的训练数据的数量。

本来是想通过旋转的方式来扩充MotoX的数据的,但是发现旋转之后保存的图片存储变小了,所以放弃了这种想法,直接修改训练的list,将MotoX的部分数据重复几次。将MotoX的数据扩充到6000左右(1980*3)。

 

 

       9.训练数据集:

TrainAug2.txt 使用原始训练数据加上good_jpgs

TrainAug2.txt使用原始所有数据(train+val)加上good_jpgs

BalanceTrain.txt平衡TrainAug2数据,使得每个类别的数据都为6993

TrainAug3    TrainAug2+部分重复的MotoX

TrainAug2_1.txt      TrainAug2+val_image_aug+MotoxExtraAug

TrainAug2_1.txt     TrainAug2+val_image_aug+MotoxExtraAug+MotoxExtraAug2

 

10.Multi crop test

四个角落 中间 然后mirror得到10张图,分别预测之后取平均值,预测score增加差不多0.01


这篇关于Kaggle-Camera_Model_Identification 比赛记录总结[19/582(Top 4%)]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1064284

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta