GAN相关工作介绍

2024-06-15 18:48
文章标签 工作 介绍 相关 gan

本文主要是介绍GAN相关工作介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GAN介绍

GenerativeAdversarial Nets

生成对抗网络的思想在2014年提出,在原始的paper中,作者用博弈论来阐释GAN框架背后的思想。每一个GAN框架,都包含一个生成模型G和一个判别模型D,判别模型的任务是判断给定图像是否看起来‘自然’,换句话说,是否像是机器生成的。而生成器的任务是,生成看起来‘自然’的图像,要求与原始数据分布尽可能一致。作者在文中有一个形象的比喻:生成模型G就像小偷,要尽可能地提高自己的偷窃手段去欺骗身为警察的判别模型D,而D也要尽可能的训练自己的火眼金睛去防止被欺骗。实现的方法是让两个网络相互竞争,其中生成器网络不断捕捉训练库里真实图片的概率分布,将输入的随机噪声z转变成新的样本(也就是假数据)。判别器网络可以同时观察真实和假造的数据,判断这个数据到底是不是真的。所以,体现在公式上,就是下面这样一个 minmax 的形式。


其中,D(x)代表x来自真实数据而不是生成器产生的数据的概率,通过训练G使得log(1-d(g(z)))的值最小。

如图所示,我们手上有真实数据(黑色点,data)和模型生成的伪数据(绿色线,model distribution,是由我们的 z 映射过去的)(画成波峰的形式是因为它们都代表着各自的分布,其中纵轴是分布,横轴是我们的 x)。而我们要学习的 D 就是那条蓝色的点线,这条线的目的是把融在一起的 data 和 model 分布给区分开。(写成公式就是 data 和 model分布相加做分母,分子则是真实的 data 分布。我们最终要达到的效果是:D 无限接近于常数 1/2。换句话说就是要 Pmodel 和 Pdata 无限相似。这个时候,我们的 D 分布再也没法分辨出真伪数据的区别了。这时候,我们就可以说我们训练出了一个炉火纯青的造假者(生成模型)。)

GAN这种竞争的方式不再要求一个假设的数据分布,而是直接进行采样,从而真正达到了理论上可以完全逼近真实数据。这也是 GAN 最大的优势。

虽然GAN不再需要预先建模,但这个优点也带来了一些麻烦。

尽管它用一个noise z作为先验,但生成模型如何利用这个z是无法控制的。也就是说,GAN 的学习模式太过于自由了,使得 GAN 的训练过程和训练结果很多时候都不太可控。在这篇paper中,每次学习参数的更新过程,被设为 D 更新 k 回,G 才更新 1 回,就是出于减少G 的“自由度”的考虑。


 

ConditionalGenerative Adversarial Nets

为了解决GAN太过自由的这个问题,一个很自然的思想便是给 GAN 加上一点点束缚,于是便有了Conditional Generative Adversarial Nets(CGAN)。这篇工作的改进非常直接,就是在D和G的建模中分别加入 条件变量 y。也因此,CGAN 可以看做把无监督的 GAN 变成有监督的模型的一种改进。后来这一方式也被证明非常有效。

 

 

 

Deep Generative Image Models using a LaplacianPyramid of Adversarial Networks

同样,为了改进GAN 太自由的问题,还有一个想法就是不要让 GAN 一次完成全部任务,而是一次生成一部分,分多次生成一张完整的图片。本篇paper就是采用这样的思想,在GAN 基础上做出了改进。

采用了Laplacian Pyramid 实现了“序列化”,也因此起名做 LAPGAN 。

在学习序列中,LAPGAN 不断地进行 downsample 和 upsample 操作,然后在每一个 Pyramid level 中,只将残差传递给判别模型D进行判断。这样的“序列化+ 残差结合”的方式,能有效减少 GAN 需要学习的内容和难度,从而达到了 “辅助”GAN 学习的目的。


这个图中,当图像是较大像素时,便需要进行Laplacian Pyramid 过程,并且在每一个Pyramidlevel ,传给 D 的只是针对残差的比较。另一方面,当像素足够小的时候,也就是最右边的 step,则不再需要进行upsample和downsample的过程,这时给 D 的传送则是未经处理的样本和生成的图像。通过这种方法,能够得到高分辨率图像。

 

Unsupervised Representation Learning with DeepConvolutional Generative Adversarial Networks

DCGAN理论创新不大,但是工程经验值得借鉴

LAPGAN 中指出 Batch Normalization(BN)被用在 GAN 中的 D 上会导致整个学习的崩溃,但是DCGAN中则成功将 BN 用在了 G 和 D 上。

学习了 ICLR 2016 论文《Generating Sentences From aContinuous Space》中的interpolate space的方式,将生成图片中的hidden states都展示了出来,可以看出图像逐渐演变的过程。


比如本图中,第六行从左至右,显示了图中窗户生成的过程,

与此同时,他们还做了一个有创造性的工作,将向量计算运用在了图像上,得到了如下的一些结果。


比如没有戴眼镜的男人减去不戴眼镜的男人加上不戴眼镜的女人就得到了戴眼镜的女人。

 

最后,我还运行了一下DCGAN的开源代码,使用MNIST数据库,得到了一些生成的图片。程序运行的比较慢,跑了12个小时,大概进行了8个epoch。


这是训练时第一个epoch中第99次迭代时生成的图片,可见一开始还是比较模糊的。


这是第6个epoch中生成的图片,可见已经比较清楚了。


这是使用现有模型测试生成的图片,可见效果还是比较好的,完全看不出是机器生成的。





   

这篇关于GAN相关工作介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064279

相关文章

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方