TensorFlow-MNIST入门篇代码

2024-06-15 18:48

本文主要是介绍TensorFlow-MNIST入门篇代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看了下TensorFlow的官方文档 里面关于MNIST的入门篇

在这里把代码整理了

input_data.py(urllib下面有红线 没关系)

# __author__ = 'youngkl'
# -*- coding: utf-8 -*-from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport gzip
import os
import tempfileimport numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets


mnist_demo.py

#-*- coding:utf-8 -*-import tensorflow.examples.tutorials.mnist.input_data as input_data
import tensorflow as tfmnist=input_data.read_data_sets("MNIST_data/",one_hot=True)
#one_hot编码 向量上只有一位是1其他都是0x=tf.placeholder(tf.float32,[None,784])#占位符 输入任意数量的图片 每一张图片展开成784维向量
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))
y=tf.nn.softmax(tf.matmul(x,W)+b)#通过softmax得到的预测值
y_=tf.placeholder("float",[None,10])#占位符用于输入正确值
cross_entroy=-tf.reduce_sum(y_*tf.log(y))#计算交叉熵
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entroy)
#使用梯度下降算法 学习率为0.01 最小化交叉熵init=tf.initialize_all_variables()sess=tf.Session()
sess.run(init)for i in range(1000):batch_xs,batch_ys=mnist.train.next_batch(100)#随机抓取训练数据中的100个批处理数据点 用这些数据点作为参数替换之前的占位符sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
#找出tensor对象在某一维上其数据最大值所在的索引值 在此最大值1所在的索引位置就是类别标签
accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))
print sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})


输出:

Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting MNIST_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
0.9155


      

这篇关于TensorFlow-MNIST入门篇代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064278

相关文章

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave

Java抽象类Abstract Class示例代码详解

《Java抽象类AbstractClass示例代码详解》Java中的抽象类(AbstractClass)是面向对象编程中的重要概念,它通过abstract关键字声明,用于定义一组相关类的公共行为和属... 目录一、抽象类的定义1. 语法格式2. 核心特征二、抽象类的核心用途1. 定义公共接口2. 提供默认实