度量学习相关 - 简单记录(代码和阅读材料)

2024-06-15 16:38

本文主要是介绍度量学习相关 - 简单记录(代码和阅读材料),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

20210312 -

0. 引言

(本人非专业人士,仅仅记录自己的简单理解,本人所引用代码或文章并未经过实际验证,仅仅参考其中主要思想,如有报错请自行解决)
度量学习会在神经网络的训练中,加入或者直接使用相似度作为目标。之前在上一门课程的时候,正好阅读过一篇与此相关的顶会文章,当时对其有了简单理解。简单说,就是讲相似度比较加入到神经网络的结构或者训练目标中。本篇文章用来记录一些相关的内容。

1. 孪生网络(对比损失contrastive loss)

1.1 直接代码

本部分参考文章[1]进行记录。

1.1.1 大致原理

在文章[1]中,通过非常简答的介绍,说明了孪生网络,下图来自文章[1],可见其中的大致原理。
在这里插入图片描述
从图上大致的原理来看,可以看到几个关键点:两个输入,一个输出(0/1),同时两个处理的模型权值共享。从这个角度来看(同时结合代码),那么孪生网络的作用就是,通过创造输入对,而两个输入对的输出是相似度大小,一般为0-1范围内。

1.1.2 关键代码

在文章[1]中列出了完整代码,代码并没有经过验证,但是列出几个关键点作为后续时候的时候需要思考的地方。
1)模型的构建过程

# network definition
base_network = create_base_net(input_shape)input_a = Input(shape=input_shape)
input_b = Input(shape=input_shape)
processed_a = base_network(input_a)
processed_b = base_network(input_b)
distance = Lambda(euclid_dis,output_shape=eucl_dist_output_shape)([processed_a, processed_b])
model = Model([input_a, input_b], distance)

这种编程方式是keras编程的一种方式,这种方式可能在不了解keras的情况下,有些疑惑。
所以这里在后续使用的时候要注意。

2)损失函数

def contrastive_loss(y_true, y_pred):margin = 1square_pred = K.square(y_pred)margin_square = K.square(K.maximum(margin - y_pred, 0))return K.mean(y_true * square_pred + (1 - y_true) * margin_square)

对于自定义损失函数,可以从官方提供的损失函数入手,同时考虑怎么贴合自己的需求公式。

1.1.3 训练可视化

在文章[2]中,其前面的核心代码与文章[1]一致,但是最后多了一个可视化的部分,可视化的代码也比较简单,就是下面这些。

embeddings = base_network.predict(x_train)from sklearn.manifold import TSNE
X_embedded = TSNE(n_components=2,random_state=10).fit_transform(embeddings)mnist_classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728','#9467bd', '#8c564b', '#e377c2', '#7f7f7f','#bcbd22', '#17becf']plt.figure(figsize=(10,10))
for i in range(10):inds = np.where(y_train==i)[0]plt.scatter(X_embedded[inds,0], X_embedded[inds,1], alpha=0.5, color=colors[i])
plt.legend(mnist_classes)

在这里插入图片描述
从这个图像上来看,各个类别的边界还是挺清晰的。


(20210407 添加)
在使用center loss进行查看中间层的可视化效果的时候,因为中间层并不是设置的论文中的2,而是一个大数,所以需要利用t-sne进行降维可视化,但是这种方式查看时,发现用不用center,区别不是很大,虽然用了center-loss有那么点效果,但不是非常明显,并不是跟论文中一样,那么紧凑。
结合之前学习了t-sne的原理,我觉得应该是这种可视化方法的问题;当然为了尽快查看效果,训练时间也比较短。

2. Center Loss

2.1 原理解释

中心损失是2016年发表的一篇文章,《A Discriminative Feature Learning Approach for Deep Face Recognition》,意思是说能够利用这种方法,得到比较好的区分度高的特征。文章[3]中用比较简单的说法提供了一种非常好的解释过程。虽然有些地方感觉深度不够,导致没理解,整体上还是能够理解的。

实际上,Center Loss我感觉应该不属于严格意义上的度量学习,虽然也带有那个味(个人愚见)。

但是这个损失函数的好处在于,能够将学习分类的过程和相似度度量的过程结合在一起,以往还有很多例如(初始的)三元损失那些,本质上都是为了提高相似度,但是没有在网络中加入这种因素,说白了,就是在训练过程中没有导入这种因素,让这个因素能够推动网络结构进行改变。当然,现在好像也有魔改的三元损失能够加入分类损失。

文章[4]中的解释更为学术化,而且解释了与一些其他的方法contrastive loss 和 triplets loss的对比。中心损失的大致公式如下:
在这里插入图片描述
(偷懒直接复制图片过来)
在这里插入图片描述
不过,看了很多地方都反馈说Center Loss最后的分类效果并不好,但是我觉得,这种思路也是要尝试尝试才知道。

2.2 代码部分

在github上搜索相关代码能够搜索到很多,这里简单介绍几个。首先第一个[5]是我具体看了这部分代码,看完之后感觉对于损失函数的部分的代码非常精巧,直接列出来代码

if isCenterloss:lambda_c = 0.2input_target = Input(shape=(1,)) # single value ground truth labels as inputscenters = Embedding(10,2)(input_target)l2_loss = Lambda(lambda x: K.sum(K.square(x[0]-x[1][:,0]),1,keepdims=True), name='l2_loss')([ip1,centers])model_centerloss = Model(inputs=[inputs,input_target],outputs=[ip2,l2_loss])      model_centerloss.compile(optimizer=SGD(lr=0.05), loss=["categorical_crossentropy", lambda y_true,y_pred: y_pred],loss_weights=[1,lambda_c],metrics=['accuracy'])

还要在模型训练的时候,也需要注意。从代码上看,感觉代码的罗技非常简单,甚至损失函数都没有具体放置于一个函数里面,当然这也无所谓。重点在于作者在自己的网页上对这部分代码进行了解释[6]。具体可以按照作者的思路来理解。

2.2 不同的代码实现(20210407)

在前面2.2的内容中,提供了一种代码实现方式,利用keras的嵌入层来实现类别中心的存储;但是如果对照原始论文的话,就可以看到,这种方式没有体现出来类别中心更新的过程,也就是有一个alpha的参数来控制中心是如何更新的。如果使用嵌入层的话,那么就是利用这个网络自身的优化过程来进行优化。但是我仔细想了想,虽然能够明白他是用来存储这个中心矩阵,但是具体是怎么更新的,理解不了。既然这样的话,还是参考别的代码,因为要对这个中心点矩阵进行存储,那么就需要利用自定义层来实现中心的存储。

参考

[1]Training Siamese Network on MNIST dataset
[2]Keras siamese network on MNIST
[3]CenterLoss——实战&源码
[4]Center Loss
[5]shamangary/Keras-MNIST-center-loss-with-visualization
[6]Code explanation in center loss github

这篇关于度量学习相关 - 简单记录(代码和阅读材料)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064000

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计