iOS底层探索(二) - Clang编译过程原理

2024-06-15 12:48

本文主要是介绍iOS底层探索(二) - Clang编译过程原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

编译器是属于底层知识,在日常开发中少有涉及,但在我的印象中,越接近底层是越需要编程基本功,也是越复杂的。但要想提升技术却始终绕不开要对底层原理的探究,很多资料都是直接抛出一堆函数概念和一顿操作,基础一般的小伙伴看了表示一脸懵逼。在此结合我自己的理解进行优化总结一下。毕竟知识水平有限,有问题或总结不妥的地方欢迎指出,多多学习,非常感谢!2018.2

入门起步

  • 经过上一篇对编译器的基本介绍,相信大家对Clang都有一个基本的认识了,通俗来说是一个编译器的前端,负责分析源代码(就是我们使用的C/OC/C++等)。

Clang的编译过程

1.预处理

  • 预处理顾名思义是预先处理,那预处理都做了哪些事情呢?内容如下。

  • (1) import 头文件替换

    • 面向对象编程的思维下,我们写代码会经常用到其他类的属性\方法等,我们只需要导入头文件就可以用了,如:

      #import <Foundation/Foundation.h> 
      // 这里将会在预处理时会把 Foundation.h 文件的内容拷贝过来并替换
      
    • 基于这个原理,这里引出了一个小问题,如果 ClassA.h文件引用了 ClassB.h,并且 ClassB.h也引用了 ClassA.h,这里是不是就会互相循环引入了?

      • 解决办法是在头文件中使用
      @class ClassA;
      
      • 代替
      #import "ClassA.h"
      
      • 这么写意思是声明 ClassA是一个类,这样你就可以使用ClassA做类名了,如果需要使用 ClassA的方法属性等可以在 .m 实现文件中再通过 import MyClass.h的方式使用,这种方法不但可以解决互相引入的问题还可以优化编译速度。
  • (2) macro 宏展开

    • 无参宏: 如:

      #define DATA_TYPE_NUM @"number"
      

      在此宏定义作用域内,输入了 DATA_TYPE_NUM,在预处理过程中 DATA_TYPE_NUM 都会被替换成 @"number"。

    • 带参宏: 带参数的宏 如:

      #define CYXColor(r, g, b) [UIColor colorWithRed:(r)/255.0 green:(g)/255.0 blue:(b)/255.0 alpha:1.0]
      
  • (3) 处理其他的预编译指令(其实预编译过程也是出了预编译指令的过程)

    条件编译语句也是在预处理阶段完成,并且条件编译只允许编译源程序中满足条件的程序段,使生成的目标程序较短,从而减少了内存的开销并提高了程序的效率,如以下代码就只会保留一个return语句:

    #if DEBUG        return YES;
    #elsereturn NO;
    #endif
    
  • (4) 总结:

    • 简单来说,“#”这个符号是编译器预处理的标志, 以下是一些常用的预处理指令参考
    预处理指令用法解析
    #undef取消已定义的宏
    #if如果给定条件为真,则编译以下代码
    #ifdef如果宏已经定义,则编译以下代码
    #ifndef如果宏没有定义,则编译以下代码
    #elif如果前面的#if给定条件不为真,当前条件为真,则编译以下代码
    #endif结束一个#if……#else条件编译块
*PS:还需要了解更多关于预编译的内容,还请自行百度*
[图片上传失败...(image-cf6f6f-1531632712782)][图片上传失败...(image-fd9112-1531632712782)]`$clang -E main.m`

2. Lexical Analysis - 词法分析(输出token流)

  • 预处理完成了以后,开始词法分析。词法分析其实是编译器开始工作真正意义上的第一个步骤,其所做的工作主要为将输入的代码转换为一系列符合特定语言的词法单元,这些词法单元类型包括了关键字,操作符,变量等等。举个例子:

Objective-C语言包含了关键字if、else、new等,那么在词法分析步骤时,遇到i与f或n与e与w组合在一起的时候,需要将这几个字母组合为关键字if或new这个词法单元。

  • 词法分析,只需要将源代码以字符文本的形式转化成Token流的形式,不涉及交验语义,不需要递归,是线性的。

    什么是token流呢?可以这么理解:就是有"类型",有"值"的一些小单元。

  • 再举个例子:

    比如一个运算表达式:(28 + 78) * 2这里面只需要解析出(是一个开括号,28是数字整形,+是一个运算符号即可。

编译指令: $clang -fmodules -fsyntax-only -Xclang -dump-tokens main.m

Snip20171231_7.png

 

Snip20171231_4.png

3.Semantic Analysis - 语法分析(输出(AST)抽象语法树)

编译指令:$clang -fmodules -fsyntax-only -Xclang -ast-dump main.m

Snip20180122_2.png

 

  • 语法分析的最终产物是输出抽象语法树
  • 语法分析,在Clang中由Parser和Sema两个模块配合完成
  • 交验语法是否正确
  • 根据当前语言的语法,生成语意节点,并将所有节点组合成抽象语法树(AST)
  • 这一步跟源码等价,可以反写出源码
  • Static Analysis 静态分析
    • 通过语法树进行代码静态分析,找出非语法性错误
    • 模拟代码执行路径,分析出control-flow graph(CFG) 【MRC时代会分析出引用计数的错误】
    • 预置了常用Checker(检查器)

未完待续 ...

这是上篇,为保证博客质量与阅读体验(个人感觉一次阅读过多文字有点影响阅读体验),先分享已完成的上半部分,下篇将继续介绍Clang编译过程中的剩下环节,欢迎持续关注,感谢理解与支持!2018.2

预告:下篇将继续介绍Clang与LLVM以下环节的相关知识。

下面是一些关键词,有兴趣的朋友先自行谷歌学习吧,下篇等我有闲情的时候再更新了,我也不知道什么时候。2018.7.15

4. CodeGen - (Intermediate Representation,简称IR)IR中间代码生成

  • CodeGen 负责将语法树丛顶至下遍历,翻译成LLVM IR
  • LLVM IR 是Frontend的输出,也是LLVM Backend的输入,前后端的桥接语言 (Swift也是转成这个)
  • 与 Objective-C Runtime 桥接
    • Class/Meta Class/Protocol/Category内存结构生成,并存放在指定section中(如Class:_DATA, _objc_classrefs)
    • Method/lvar/Property内存结构生成
    • 组成method_list/ivar_list/property_list并填入Class
    • Non-Fragile ABI:为每个Ivar合成OBJC_IVAR_$_偏移值常量
    • 存取Ivar的语句(ivar = 123; int a = ivar;)转写成base + OBJC_IVAR$_的形式
    • 将语法树中的ObjcMessageExpr翻译成相应版本的objc_msgSend,对super关键字的调用翻译成objc_msgSendSuper
    • 根据修饰符strong/weak/copy/atomic合成@property 自动实现的 setter/getter
    • 处理@synthesize
    • 生成block_layout的数据结构
    • 变量的capture(__block/__weak)
    • 生成_block_invoke函数
    • ARC:分析对象引用关系,将objc_storeStrong/objc_storeWeak等ARC代码插入
    • 将ObjCAutoreleasePoolStmt转译成objc_autoreleasePoolPush/Pop
    • 实现自动调用[super dealloc]
    • 为每个拥有ivar的Class合成.cxx_destructor方法来自动释放类的成员变量,代替MRC时代的“self.xxx = nil”

5. Optimize - 优化IR

  • 递归优化成尾递归

6. LLVM Bitcode - 生成字节码

7. Assemble - 生成Target相关汇编

  • Assemble - 生成Target相关Object(Mach-O)

8. Link生成Executable

 

这篇关于iOS底层探索(二) - Clang编译过程原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1063498

相关文章

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、