Linux内核部件分析

2024-06-15 06:58
文章标签 分析 linux 内核 部件

本文主要是介绍Linux内核部件分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在任何处理器平台下,都会有一些原子性操作,供操作系统使用,我们这里只讲x86下面的。在单处理器情况下,每条指令的执行都是原子性的,但在多处理器情况下,只有那些单独的读操作或写操作才是原子性的。为了弥补这一缺点,x86提供了附加的lock前缀,使带lock前缀的读修改写指令也能原子性执行。带lock前缀的指令在操作时会锁住总线,使自身的执行即使在多处理器间也是原子性执行的。xchg指令不带lock前缀也是原子性执行,也就是说xchg执行时默认会锁内存总线。原子性操作是线程间同步的基础,linux专门定义了一种只进行原子操作的类型atomic_t,并提供相关的原子读写调用API。本节就来分析这些原子操作在x86下的实现。
  1. typedef struct {  
  2.     volatile int counter;  
  3. } atomic_t;  

原子类型其实是int类型,只是禁止寄存器对其暂存。

  1. #define ATOMIC_INIT(i)  { (i) }  

原子类型的初始化。32位x86平台下atomic API在arch/x86/include/asm/atomic_32.h中实现。

  1. static inline int atomic_read(const atomic_t *v)  
  2. {  
  3.     return v->counter;  
  4. }  
  5.   
  6. static inline void atomic_set(atomic_t *v, int i)  
  7. {  
  8.     v->counter = i;  
  9. }  

单独的读操作或者写操作,在x86下都是原子性的。

  1. static inline void atomic_add(int i, atomic_t *v)  
  2. {  
  3.     asm volatile(LOCK_PREFIX "addl %1,%0"  
  4.              : "+m" (v->counter)  
  5.              : "ir" (i));  
  6. }  
  7.   
  8. static inline void atomic_sub(int i, atomic_t *v)  
  9. {  
  10.     asm volatile(LOCK_PREFIX "subl %1,%0"  
  11.              : "+m" (v->counter)  
  12.              : "ir" (i));  
  13. }  

atomic_add和atomic_sub属于读修改写操作,实现时需要加lock前缀。

  1. static inline int atomic_sub_and_test(int i, atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "subl %2,%0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : "ir" (i) : "memory");  
  8.     return c;  
  9. }  

atomic_sub_and_test执行完减操作后检查结果是否为0。

  1. static inline void atomic_inc(atomic_t *v)  
  2. {  
  3.     asm volatile(LOCK_PREFIX "incl %0"  
  4.              : "+m" (v->counter));  
  5. }  
  6.   
  7. static inline void atomic_dec(atomic_t *v)  
  8. {  
  9.     asm volatile(LOCK_PREFIX "decl %0"  
  10.              : "+m" (v->counter));  
  11. }  

atomic_inc和atomic_dec是递增递减操作。

  1. static inline int atomic_dec_and_test(atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "decl %0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : : "memory");  
  8.     return c != 0;  
  9. }  

atomic_dec_and_test在递减后检查结果是否为0。

  1. static inline int atomic_inc_and_test(atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "incl %0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : : "memory");  
  8.     return c != 0;  
  9. }  

atomic_inc_and_test在递增后检查结果是否为0。

  1. static inline int atomic_add_negative(int i, atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "addl %2,%0; sets %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : "ir" (i) : "memory");  
  8.     return c;  
  9. }  

atomic_add_negative在加操作后检查结果是否为负数。

  1. static inline int atomic_add_return(int i, atomic_t *v)  
  2. {  
  3.     int __i;  
  4. #ifdef CONFIG_M386   
  5.     unsigned long flags;  
  6.     if (unlikely(boot_cpu_data.x86 <= 3))  
  7.         goto no_xadd;  
  8. #endif   
  9.     /* Modern 486+ processor */  
  10.     __i = i;  
  11.     asm volatile(LOCK_PREFIX "xaddl %0, %1"  
  12.              : "+r" (i), "+m" (v->counter)  
  13.              : : "memory");  
  14.     return i + __i;  
  15.   
  16. #ifdef CONFIG_M386   
  17. no_xadd: /* Legacy 386 processor */  
  18.     local_irq_save(flags);  
  19.     __i = atomic_read(v);  
  20.     atomic_set(v, i + __i);  
  21.     local_irq_restore(flags);  
  22.     return i + __i;  
  23. #endif   
  24. }  

atomic_add_return 不仅执行加操作,而且把相加的结果返回。它是通过xadd这一指令实现的。

  1. static inline int atomic_sub_return(int i, atomic_t *v)  
  2. {  
  3.     return atomic_add_return(-i, v);  
  4. }  

atomic_sub_return 不仅执行减操作,而且把相减的结果返回。它是通过atomic_add_return实现的。

  1. static inline int atomic_cmpxchg(atomic_t *v, int old, int new)  
  2. {  
  3.     return cmpxchg(&v->counter, old, new);  
  4. }  
  5.   
  6. #define cmpxchg(ptr, o, n)                      \   
  7.     ((__typeof__(*(ptr)))__cmpxchg((ptr), (unsigned long)(o),   \  
  8.                        (unsigned long)(n),      \  
  9.                        sizeof(*(ptr))))  
  10.   
  11. static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,  
  12.                       unsigned long newint size)  
  13. {  
  14.     unsigned long prev;  
  15.     switch (size) {  
  16.     case 1:  
  17.         asm volatile(LOCK_PREFIX "cmpxchgb %b1,%2"  
  18.                  : "=a"(prev)  
  19.                  : "q"(new), "m"(*__xg(ptr)), "0"(old)  
  20.                  : "memory");  
  21.         return prev;  
  22.     case 2:  
  23.         asm volatile(LOCK_PREFIX "cmpxchgw %w1,%2"  
  24.                  : "=a"(prev)  
  25.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  26.                  : "memory");  
  27.         return prev;  
  28.     case 4:  
  29.         asm volatile(LOCK_PREFIX "cmpxchgl %k1,%2"  
  30.                  : "=a"(prev)  
  31.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  32.                  : "memory");  
  33.         return prev;  
  34.     case 8:  
  35.         asm volatile(LOCK_PREFIX "cmpxchgq %1,%2"  
  36.                  : "=a"(prev)  
  37.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  38.                  : "memory");  
  39.         return prev;  
  40.     }  
  41.     return old;  
  42. }  

atomic_cmpxchg是由cmpxchg指令完成的。它把旧值同atomic_t类型的值相比较,如果相同,就把新值存入atomic_t类型的值中,返回atomic_t类型变量中原有的值。

  1. static inline int atomic_xchg(atomic_t *v, int new)  
  2. {  
  3.     return xchg(&v->counter, new);  
  4. }  
  5.   
  6. #define xchg(ptr, v)                            \   
  7.     ((__typeof__(*(ptr)))__xchg((unsigned long)(v), (ptr), sizeof(*(ptr))))  
  8.   
  9. static inline unsigned long __xchg(unsigned long x, volatile void *ptr,  
  10.                    int size)  
  11. {  
  12.     switch (size) {  
  13.     case 1:  
  14.         asm volatile("xchgb %b0,%1"  
  15.                  : "=q" (x)  
  16.                  : "m" (*__xg(ptr)), "0" (x)  
  17.                  : "memory");  
  18.         break;  
  19.     case 2:  
  20.         asm volatile("xchgw %w0,%1"  
  21.                  : "=r" (x)  
  22.                  : "m" (*__xg(ptr)), "0" (x)  
  23.                  : "memory");  
  24.         break;  
  25.     case 4:  
  26.         asm volatile("xchgl %k0,%1"  
  27.                  : "=r" (x)  
  28.                  : "m" (*__xg(ptr)), "0" (x)  
  29.                  : "memory");  
  30.         break;  
  31.     case 8:  
  32.         asm volatile("xchgq %0,%1"  
  33.                  : "=r" (x)  
  34.                  : "m" (*__xg(ptr)), "0" (x)  
  35.                  : "memory");  
  36.         break;  
  37.     }  
  38.     return x;  
  39. }  

atomic_xchg则是将新值存入atomic_t类型的变量,并将变量的旧值返回。它使用xchg指令实现。

  1. /** 
  2.  * atomic_add_unless - add unless the number is already a given value 
  3.  * @v: pointer of type atomic_t 
  4.  * @a: the amount to add to v... 
  5.  * @u: ...unless v is equal to u. 
  6.  * 
  7.  * Atomically adds @a to @v, so long as @v was not already @u. 
  8.  * Returns non-zero if @v was not @u, and zero otherwise. 
  9.  */  
  10. static inline int atomic_add_unless(atomic_t *v, int a, int u)  
  11. {  
  12.     int c, old;  
  13.     c = atomic_read(v);  
  14.     for (;;) {  
  15.         if (unlikely(c == (u)))  
  16.             break;  
  17.         old = atomic_cmpxchg((v), c, c + (a));  
  18.         if (likely(old == c))  
  19.             break;  
  20.         c = old;  
  21.     }  
  22.     return c != (u);  
  23. }  

atomic_add_unless的功能比较特殊。它检查v是否等于u,如果不是则把v的值加上a,返回值表示相加前v是否等于u。因为在atomic_read和atomic_cmpxchg中间可能有其它的写操作,所以要循环检查自己的值是否被写进去。

  1. #define atomic_inc_not_zero(v) atomic_add_unless((v), 1, 0)   
  2.   
  3. #define atomic_inc_return(v)  (atomic_add_return(1, v))   
  4. #define atomic_dec_return(v)  (atomic_sub_return(1, v))  

atomic_inc_not_zero在v值不是0时加1。

atomic_inc_return对v值加1,并返回相加结果。

atomic_dec_return对v值减1,并返回相减结果。

  1. #define atomic_clear_mask(mask, addr)               \   
  2.     asm volatile(LOCK_PREFIX "andl %0,%1"           \  
  3.              : : "r" (~(mask)), "m" (*(addr)) : "memory")  

atomic_clear_mask清除变量某些位。

  1. #define atomic_set_mask(mask, addr)             \   
  2.     asm volatile(LOCK_PREFIX "orl %0,%1"                \  
  3.              : : "r" (mask), "m" (*(addr)) : "memory")  

atomic_set_mask将变量的某些位置位。

  1. /* Atomic operations are already serializing on x86 */  
  2. #define smp_mb__before_atomic_dec() barrier()   
  3. #define smp_mb__after_atomic_dec()  barrier()   
  4. #define smp_mb__before_atomic_inc() barrier()   
  5. #define smp_mb__after_atomic_inc()  barrier()  

因为x86的atomic操作大多使用原子指令或者带lock前缀的指令。带lock前缀的指令执行前会完成之前的读写操作,对于原子操作来说不会受之前对同一位置的读写操作,所以这里只是用空操作barrier()代替。barrier()的作用相当于告诉编译器这里有一个内存屏障,放弃在寄存器中的暂存值,重新从内存中读入。

本节的atomic_t类型操作是最基础的,为了介绍下面的内容,必须先介绍它。如果可以使用atomic_t类型代替临界区操作,也可以加快不少速度。

这篇关于Linux内核部件分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062736

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Oracle数据库定时备份脚本方式(Linux)

《Oracle数据库定时备份脚本方式(Linux)》文章介绍Oracle数据库自动备份方案,包含主机备份传输与备机解压导入流程,强调需提前全量删除原库数据避免报错,并需配置无密传输、定时任务及验证脚本... 目录说明主机脚本备机上自动导库脚本整个自动备份oracle数据库的过程(建议全程用root用户)总结

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Linux如何查看文件权限的命令

《Linux如何查看文件权限的命令》Linux中使用ls-R命令递归查看指定目录及子目录下所有文件和文件夹的权限信息,以列表形式展示权限位、所有者、组等详细内容... 目录linux China编程查看文件权限命令输出结果示例这里是查看tomcat文件夹总结Linux 查看文件权限命令ls -l 文件或文件夹

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window