「动态规划」买卖股票的最佳时机,如何处理多笔交易?

2024-06-15 05:12

本文主要是介绍「动态规划」买卖股票的最佳时机,如何处理多笔交易?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

188. 买卖股票的最佳时机 IVicon-default.png?t=N7T8https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/

给你一个整数数组prices和一个整数k,其中prices[i]是某支给定的股票在第i天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成k笔交易。也就是说,你最多可以买k次,卖k次。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  1. 输入:k = 2,prices = [2,4,1],输出:2,解释:在第1天(股票价格 = 2)的时候买入,在第2天(股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4 - 2 = 2。
  2. 输入:k = 2,prices = [3,2,6,5,0,3],输出:7,解释:在第2天(股票价格 = 2)的时候买入,在第3天(股票价格 = 6)的时候卖出,这笔交易所能获得利润 = 6 - 2 = 4。随后,在第5天(股票价格 = 0)的时候买入,在第6天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3 - 0 = 3。

提示:1 <= k <= 100,1 <= prices.length <= 1000,0 <= prices[i] <= 1000。


我们用动态规划的思想来解决这个问题。

确定状态表示:根据经验和题目要求,我们把状态细分为:

  • 我们用f[i][j]表示:在第i天结束时,处于买入状态下,总共交易j次,此时的最大利润。
  • 我们用g[i][j]表示:在第i天结束时,处于卖出状态下,总共交易j次,此时的最大利润。

解释一下上面出现的名词。如果我们手里有股票,我们称当前处于买入状态下;如果我们手里没有股票,我们称当前处于卖出状态下。一次完整的买入持有到卖出称为一笔交易,也就是说,一开始的交易次数为0,在每次卖出时交易次数加1。每次买入股票会让利润减少股票在当天的价格,卖出股票会让利润增加股票在当天的价格。在状态表示中,f和g分别表示买入和卖出状态,i表示天数,j表示交易次数,f[i][j]和g[i][j]表示最大利润。

推导状态转移方程:我们需要考虑最近的一步,即第i - 1天的状态和交易次数。

首先考虑f[i][j],即在第i天结束时处于买入状态下,且交易了j次。

  • 如果在第i - 1天结束时,处于买入状态下,且交易了j次,此时的利润是f[i - 1][j],那么只需要在第i天什么都不做,在第i天结束时,依然处于买入状态下,且交易了j次,利润不变,依然是f[i - 1][j]。
  • 如果在第i - 1天结束时,处于卖出状态下,且交易了j次,此时的利润是g[i - 1][j],那么只需要在第i天买入股票,在第i天结束时,就会处于买入状态下,且交易了j次,利润减少股票在第i天的价格,即g[i - 1][j] - prices[i]。

由于f[i][j]表示最大利润,所以取上面2种情况的较大值,即f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i])。

接着考虑g[i][j],即在第i天结束时处于卖出状态下,且交易了j次。

  • 如果在第i - 1天结束时,处于买入状态下,且交易了j - 1次,此时的利润是f[i - 1][j - 1],那么只需要在第i天卖出股票,在第i天结束时,就会处于卖出状态下,交易次数加1,即交易了j次,利润增加股票在第i天的价格,即f[i - 1][j - 1] + prices[i]。
  • 如果在第i - 1天结束时,处于卖出状态下,且交易了j次,此时的利润是g[i - 1][j],那么只需要在第i天什么都不做,在第i天结束时,依然处于卖出状态下,且交易了j次,利润不变,依然是g[i - 1][j]。

由于g[i][j]表示最大利润,所以取上面2种情况的较大值,即g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])。

综上所述:f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]),g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])

初始化:根据状态转移方程,

  • 计算f[i][j]时,当i = 0时会越界。
  • 计算g[i][j]时,当i = 0或j = 0时会越界。

所以,我们要初始化相应的位置。容易想到:

  • f[0][0]表示在第0天结束时,处于买入状态下,此时的最大利润。一开始利润是0,在第0天买入股票,显然f[0][0] = -prices[0]。
  • g[0][0]表示在第0天结束时,处于卖出状态下,此时的最大利润。一开始利润是0,在第0天什么都不做,显然g[0][0] = 0。

接着考虑f[0][j],其中j > 0。j > 0说明交易次数至少是1次,也就是说在第0天一定做出了买入并且立刻卖出股票的操作。然而这种操作是没有意义的,因为浪费了交易次数,并不会增加最大利润。观察状态转移方程,发现不管是f[i][j]还是g[i][j],最终都是对2个值求max。要想不影响到计算结果,我们要对f[0][j],其中j > 0的位置的值都初始化为-∞。同理g[0][j],其中j > 0的位置的值也要初始化为-∞。考虑到状态转移方程中,有g[i - 1][j] - prices[i]这样有溢出风险的计算,所以不能简单地用INT_MIN表示-∞,而要用-0x3f3f3f3f。

再考虑g[i][0],其中i > 0。观察状态转移方程:g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])。为什么g[i][0],其中i > 0的位置会越界呢?因为方程中含有f[i - 1][j - 1],当j = 0时,j - 1 = -1,不存在交易次数为-1的情况。所以,我们需要判断一下,当j - 1 = -1时,这种情况不存在,相当于求max的2项中,前一项不存在,那么就只剩下后一项,即g[i - 1][j],即此时g[i][j] = g[i - 1][j]。只有当j - 1 >= 0时,求max的2项都有意义,此时才计算g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])。也就是说,先让g[i][j] = g[i - 1][j],接着判断j - 1是否大于-1,即j是否大于0,如果判断成立,再让g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i])。

综上所述:初始化需要注意以下几点:f[0][0] = -prices[0];g[0][0] = 0;f[0][j] = g[0][j] = -0x3f3f3f3f,其中j > 0;当i > 0时,先让g[i][j] = g[i - 1][j],接着判断j - 1是否大于-1,即j是否大于0,如果判断成立,再让g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i])。只需做到以上几点,就不会越界。

填表顺序:观察状态转移方程,显然我们要沿着i和j增大的方向同时填f表和g表

返回值:假设总共有n天,最多完成k笔交易。对于第i天,i的范围是[0, n - 1]。根据题目要求,我们要返回的是最后一天结束后的最大利润,即第n - 1天结束后的最大利润。可以确定,如果要求最大利润,第n - 1天结束后一定要处于卖出状态下,否则在第n - 1天卖出股票可以获得更多利润。另外,并不确定第n - 1天结束后的交易次数。根据状态表示,我们要返回的是g[n - 1][j]的最大值,其中j的范围是[0, k]

细节问题:由于i的范围是[0, n - 1],j的范围是[0, k],所以f表和g表的规模都是n x (k + 1)。另外,交易次数不会超过天数的一半,所以要先计算k = min(k, n / 2)

时间复杂度:O(N^2),空间复杂度:O(N^2)。最坏情况是k刚好是n的一半。

class Solution {
public:int maxProfit(int k, vector<int>& prices) {const int INF = 0x3f3f3f3f;int n = prices.size();// 交易次数不会超过天数的一半k = min(k, n / 2);// 创建dp表vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;// 初始化f[0][0] = -prices[0];g[0][0] = 0;// 填表for (int i = 1; i < n; i++) {for (int j = 0; j <= k; j++) {f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j > 0) {g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}}// 返回结果return *max_element(g[n - 1].begin(), g[n - 1].end());}
};

123. 买卖股票的最佳时机 IIIicon-default.png?t=N7T8https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/

给定一个数组,它的第i个元素是一支给定的股票在第i天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成两笔交易。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  1. 输入:prices = [3,3,5,0,0,3,1,4],输出:6,解释:在第4天(股票价格 = 0)的时候买入,在第6天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3 - 0 = 3 。随后,在第7天(股票价格 = 1)的时候买入,在第8天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4 - 1 = 3。
  2. 输入:prices = [1,2,3,4,5],输出:4,解释:在第1天(股票价格 = 1)的时候买入,在第5天 (股票价格 = 5)的时候卖出,这笔交易所能获得利润 = 5 - 1 = 4。注意你不能在第1天和第2天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
  3. 输入:prices = [7,6,4,3,1],输出:0,解释:在这个情况下,没有交易完成,所以最大利润为0。
  4. 输入:prices = [1],输出:0

提示:1 <= prices.length <= 10^5,0 <= prices[i] <= 10^5。


这道题是上道题在k = 2时的特殊情况,我们只需要复用上道题的代码就行了。当然,感兴趣的话,你也可以用动态规划的思想来分析分析。

class Solution {
public:int maxProfit(vector<int>& prices) { return maxProfit(2, prices); }private:int maxProfit(int k, vector<int>& prices) {const int INF = 0x3f3f3f3f;int n = prices.size();// 交易次数不会超过天数的一半k = min(k, n / 2);// 创建dp表vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;// 初始化f[0][0] = -prices[0];g[0][0] = 0;// 填表for (int i = 1; i < n; i++) {for (int j = 0; j <= k; j++) {f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j > 0) {g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}}// 返回结果return *max_element(g[n - 1].begin(), g[n - 1].end());}
};

这篇关于「动态规划」买卖股票的最佳时机,如何处理多笔交易?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062513

相关文章

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Java异常捕获及处理方式详解

《Java异常捕获及处理方式详解》异常处理是Java编程中非常重要的一部分,它允许我们在程序运行时捕获并处理错误或不预期的行为,而不是让程序直接崩溃,本文将介绍Java中如何捕获异常,以及常用的异常处... 目录前言什么是异常?Java异常的基本语法解释:1. 捕获异常并处理示例1:捕获并处理单个异常解释:

MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)

《MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)》本文给大家介绍MyBatis的xml中字符串类型判空与非字符串类型判空处理方式,本文给大家介绍的非常详细,对大家的学习或... 目录完整 Hutool 写法版本对比优化为什么status变成Long?为什么 price 没事?怎

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、