HDU5478 Can you find it【同余问题】

2024-06-15 04:48
文章标签 问题 find 同余 hdu5478

本文主要是介绍HDU5478 Can you find it【同余问题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5478


题目大意:

给你一个素数 C(1 <= C <= 2*10^5) 和整数 k1、b1、k2(1 <= k1,k2,b1 <= 10^9)。

找出有多少个(a,b)满足 a^(k1*n+b1) + b^(k2*n-k2+1) ≡ 0(mod C)(n = 1,2,3,…)

如果找不到则输出 -1。


解题思路:

先来看同余的几个基本定理。

1. a ≡ b(mod m),当且仅当 m | (a-b)。

2. a ≡ b(mod m),当且仅当存在整数 k,使得 a = b + k*m。

3. 同余关系是等价关系,即

(1) 自反性:a ≡ a(mod m)。

(2) 对称性:若 a ≡ b(mod m),则 b ≡ a(mod m)。

(3) 传递性:若 a ≡ b(mod m),b ≡ c(mod m),则 a ≡ c(mod m)。

4. 若 a,b,c 是整数,m 是正整数,且 a ≡ b(mod m),则

(1) a + c ≡ b + c(mod m);

(2) a - c ≡ b - c(mod m);

(3) a*c ≡ b*c(mod m);

5. 设 a,b,c,d 为整数,m 为正整数,若 a ≡ b(mod m),c ≡ d(mod m),则

(1) a*x + c*y ≡ b*x + d*y(mod m)

(2) a*c ≡ b*d(mod m),即同余式可以相乘;

(3) a^n ≡ b^n(mod m),其中 n > 0;

(4) f(a) ≡ f(b)(mod m),其中 f(x) 为任一整数系数多项式。

6. 设 a,b,c,d 为整数,m 为正整数,则

(1) 若 a ≡ b(mod m),且 d | m,则 a ≡ b(mod d);

(2) 若 a ≡ b(mod m),则 gcd(a,m)  = gcd(b,m);  

(3) a ≡ b(mod mi)(1 <= i <= n)同时成立,当且仅当 a ≡ b(mod [m1,m2,…,mn])。

7. 若 a*c ≡ b*c(mod m),且 gcd(c,m) = d,则 a ≡ b(mod m/d)。

再看这倒题:

因为恒等式要对所有的 n(正整数)成立,所以要让式子变为对 n 无关的样子。

a^(k1*n+b1) + b^(k2*n-k2+1) ≡ 0(mod C)  

a^(k1*n+b1) ≡ -1*b^(k2*n-k2+1)(mod C)  定理4(2)

a^(k1*n+b1) ≡ (C-1)*b^(k2*n-k2+1)(mod C) 

a^(k1*n)*a^b1 ≡ b^(k2*n)*(C-1)*b^(1-k2)(mod C)

a^b1 * b^(k2-1) / (C-1) ≡ (b^k2 / a^k1)^n(mod C) 定理7

这样来看,只有右边等式为 1,才能使无论 n 为多少,式子都恒成立,所以可以得到两个

式子:

a^b1 * b^(k2-1) ≡ (C-1)(mod C)

a^k1 = b^k2

在原式 a^(k1*n+b1) + b^(k2*n-k2+1) ≡ 0(mod C) 中,n = 1 时,a^(k1+b1) + b = 0,

则对于确定的 a,对应的 b 只有一个,那么现在枚举 a,然后计算出 b,再去判断 (a,b)是

否满足上述两式。


AC代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define LL __int64
using namespace std;
const int MAXN = 200100;LL C,k1,k2,b1;
LL QuickPow(LL a,LL b)
{LL ans = 1;while(b){if(b & 1)ans = ans*a % C;a = a*a % C;b >>= 1;}return ans;
}bool Judge(LL a,LL b)
{return QuickPow(a,k1) == QuickPow(b,k2) && 1LL*QuickPow(a,b1)*QuickPow(b,k2-1)%C == C-1;
}
int main()
{int kase = 0;while(~scanf("%I64d%64d%64d%64d",&C,&k1,&b1,&k2)){printf("Case #%d:\n",++kase);bool flag = false;for(LL i = 1; i < C; ++i){LL b = C - QuickPow(i,k1+b1);if(Judge(i,b)){flag = true;printf("%I64d %I64d\n",i,b);}}if(!flag)printf("-1\n");}return 0;
}


这篇关于HDU5478 Can you find it【同余问题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062462

相关文章

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例

解决Entity Framework中自增主键的问题

《解决EntityFramework中自增主键的问题》:本文主要介绍解决EntityFramework中自增主键的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录Entity Framework中自增主键问题解决办法1解决办法2解决办法3总结Entity Fram