linux 管道传递socket套接字

2024-06-15 01:48

本文主要是介绍linux 管道传递socket套接字,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前面我们介绍了UNIX域套接字编程,更重要的一点是UNIX域套接字可以在同一台主机上各进程之间传递文件描述符。

下面先来看两个函数:

#include <sys/types.h>
#include <sys/socket.h>

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

它们与sendto 和 recvfrom 函数相似,只不过可以传输更复杂的数据结构,不仅可以传输一般数据,还可以传输额外的数据,即文件描述符。下面来看结构体msghdr :

struct msghdr {
              void         *msg_name;       /* optional address */
              socklen_t     msg_namelen;    /* size of address */
              struct iovec *msg_iov;        /* scatter/gather array */
              size_t        msg_iovlen;     /* # elements in msg_iov */
              void         *msg_control;    /* ancillary data, see below */
              size_t        msg_controllen; /* ancillary data buffer len */
              int           msg_flags;      /* flags on received message */
          };

如下图所示:

1、msg_name :即对等方的地址指针,不关心时设为NULL即可;

2、msg_namelen:地址长度,不关心时设置为0即可;

3、msg_iov:是结构体iovec 的指针。  

struct iovec {
              void  *iov_base;    /* Starting address */
              size_t iov_len;     /* Number of bytes to transfer */
          };

成员iov_base 可以认为是传输正常数据时的buf,iov_len 是buf 的大小。

4、msg_iovlen:当有n个iovec 结构体时,此值为n;

5、msg_control:是一个指向cmsghdr 结构体的指针

 struct cmsghdr {
          socklen_t cmsg_len;    /* data byte count, including header */
          int       cmsg_level;  /* originating protocol */
          int       cmsg_type;   /* protocol-specific type */
          /* followed by unsigned char cmsg_data[]; */
      };

6、msg_controllen :参见下图,即cmsghdr 结构体可能不止一个;

7、flags : 一般设置为0即可;

为了对齐,可能存在一些填充字节,跟每个系统的实现有关,但我们不必关心,可以通过一些函数宏来获取相关的值,如下:

#include <sys/socket.h>

      struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);
      struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh, struct cmsghdr *cmsg);
      size_t CMSG_ALIGN(size_t length);
      size_t CMSG_SPACE(size_t length);
      size_t CMSG_LEN(size_t length);
      unsigned char *CMSG_DATA(struct cmsghdr *cmsg);

下面通过封装两个函数,send_fd 和 recv_fd 来进一步认识这些函数宏的作用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
void send_fd( int sock_fd, int send_fd)
{
     int ret;
     struct msghdr msg;
     struct cmsghdr *p_cmsg;
     struct iovec vec;
     char cmsgbuf[CMSG_SPACE( sizeof (send_fd))];
     int *p_fds;
     char sendchar = 0;
     msg.msg_control = cmsgbuf;
     msg.msg_controllen = sizeof (cmsgbuf);
     p_cmsg = CMSG_FIRSTHDR(&msg);
     p_cmsg->cmsg_level = SOL_SOCKET;
     p_cmsg->cmsg_type = SCM_RIGHTS;
     p_cmsg->cmsg_len = CMSG_LEN( sizeof (send_fd));
     p_fds = ( int *)CMSG_DATA(p_cmsg);
     *p_fds = send_fd; // 通过传递辅助数据的方式传递文件描述符
      
     msg.msg_name = NULL;
     msg.msg_namelen = 0;
     msg.msg_iov = &vec;
     msg.msg_iovlen = 1; //主要目的不是传递数据,故只传1个字符
     msg.msg_flags = 0;
      
     vec.iov_base = &sendchar;
     vec.iov_len = sizeof (sendchar);
     ret = sendmsg(sock_fd, &msg, 0);
     if (ret != 1)
         ERR_EXIT( "sendmsg" );
}
      
int recv_fd( const int sock_fd)
{
     int ret;
     struct msghdr msg;
     char recvchar;
     struct iovec vec;
     int recv_fd;
     char cmsgbuf[CMSG_SPACE( sizeof (recv_fd))];
     struct cmsghdr *p_cmsg;
     int *p_fd;
     vec.iov_base = &recvchar;
     vec.iov_len = sizeof (recvchar);
     msg.msg_name = NULL;
     msg.msg_namelen = 0;
     msg.msg_iov = &vec;
     msg.msg_iovlen = 1;
     msg.msg_control = cmsgbuf;
     msg.msg_controllen = sizeof (cmsgbuf);
     msg.msg_flags = 0;
      
     p_fd = ( int *)CMSG_DATA(CMSG_FIRSTHDR(&msg));
     *p_fd = -1;
     ret = recvmsg(sock_fd, &msg, 0);
     if (ret != 1)
         ERR_EXIT( "recvmsg" );
      
     p_cmsg = CMSG_FIRSTHDR(&msg);
     if (p_cmsg == NULL)
         ERR_EXIT( "no passed fd" );
      
      
     p_fd = ( int *)CMSG_DATA(p_cmsg);
     recv_fd = *p_fd;
     if (recv_fd == -1)
         ERR_EXIT( "no passed fd" );
      
     return recv_fd;
}



/*************************************************************************
    > File Name: uxdomsock_sendfd.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Mon 04 Mar 2013 02:01:33 PM CST
 ************************************************************************/
     
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
     
#define ERR_EXIT(m) 
        do
        { 
                perror(m); 
                exit(EXIT_FAILURE); 
        } while(0)
     
int main(void)
{
    int sockfds[2];
    /* 只有unix域协议才能在进程间传递文件描述符,如果想要在没有亲缘关系的进程间
     * 传递,则不能用socketpair函数,要用socket()函数 */
    if (socketpair(PF_UNIX, SOCK_STREAM, 0, sockfds) < 0)
        ERR_EXIT("socketpair");
     
    pid_t pid;
    pid = fork();
    if (pid == -1)
        ERR_EXIT("fork");
    /* 如果是父进程打开的文件描述符,子进程可以共享
     * 这里演示的是子进程打开的文件描述符通过封装的函数传给父进程 */
    if (pid > 0)
    {
        close(sockfds[1]);
        int fd = recv_fd(sockfds[0]);
        char buf[1024] = {0};
        read(fd, buf, sizeof(buf));
        printf("buf=%sn", buf);
    }
    else if (pid == 0)
    {
        close(sockfds[0]);
        int fd;
        fd = open("test.txt", O_RDONLY);
        if (fd == -1);
        send_fd(sockfds[1], fd);
    }
    return 0;
}
我们知道,父进程在fork 之前打开的文件描述符,子进程是可以共享的,但是子进程打开的文件描述符,父进程是不能共享的,上述程序就是举例在子进程中打开了一个文件描述符,然后通过send_fd 函数将文件描述符传递给父进程,父进程可以通过recv_fd 函数接收到这个文件描述符。先建立一个文件test.txt 后输入几个字符,然后运行程序,输出如下:
simba@ubuntu:~/Documents/code/linux_programming/UNP/socket$ ./uxdomsock_sendfd 
buf=ilove
证明父进程确实可以打开test.txt 文件。
最后提醒一点,只有unix域协议才能在本机进程间传递文件描述符,如果想要在没有亲缘关系的进程间传递,则不能用socketpair函数,要用socket()函数 才行。

这篇关于linux 管道传递socket套接字的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062090

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

linux批量替换文件内容的实现方式

《linux批量替换文件内容的实现方式》本文总结了Linux中批量替换文件内容的几种方法,包括使用sed替换文件夹内所有文件、单个文件内容及逐行字符串,强调使用反引号和绝对路径,并分享个人经验供参考... 目录一、linux批量替换文件内容 二、替换文件内所有匹配的字符串 三、替换每一行中全部str1为st

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序