caffe CNN train_val.prototxt 神经网络参数配置说明

2024-06-14 21:38

本文主要是介绍caffe CNN train_val.prototxt 神经网络参数配置说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

name: "CaffeNet"
layer {
#输入层,即数据层
#数据层的类型除了Database外,还可以是In-Memory、HDF5 Input、HDF5 Output、Images、Windows、Dummy
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
#表示仅在训练阶段包括进去
}
transform_param {
#对数据进行预处理,依次是做镜像,设定crop大小,减去均值文件
mirror: true
crop_size: 60
mean_file: "/home/stack/caffe-master/data/HQPData/0902/img0902_mean.binaryproto"
}
data_param {
#设定数据来源
source: "/home/stack/caffe-master/examples/HuQPTask/0902/train_lmdb"
#包含数据的目录名称
batch_size: 50
#一次处理的输入的数量
backend: LMDB
#选择使用 LEVELDB 或者 LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: true
crop_size: 60
mean_file: "/home/stack/caffe-master/data/HQPData/0902/img0902_mean.binaryproto"
}
data_param {
source: "/home/stack/caffe-master/examples/HuQPTask/0902/val_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
#Convolution
#卷积层
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
#过滤器/权重 参数
lr_mult: 1
# learning rate multiplier for the filters
#学习率倍数
decay_mult: 1
# weight decay multiplier for the filters
#权重衰减率
}
param {
#偏置 参数
lr_mult: 2
# learning rate multiplier for the biases
#学习率倍数
decay_mult: 0
# weight decay multiplier for the biases
#权重衰减率
}
convolution_param {
num_output: 96
# learn 96 filters
kernel_size: 3
# each filter is 3x3
stride: 1
# step 1 pixels between each filter application
weight_filler {
#初始化权重/过滤器:均值默认为0,标准差0.01的高斯函数
type: "gaussian"
# initialize the filters from a Gaussian
std: 0.01
# distribution with stdev 0.01 (default mean: 0)  
}
bias_filler {
#初始化偏置:常数0
# initialize the biases to zero (0)
type: "constant"	  
value: 0
}
}
}
layer {
#Rectified-Linear and Leaky-ReLU 校正线性
#Activation / Neuron Layers 激励层,除了ReLu外,还可以用Sigmoid、TanH 、Absolute Value、Power、BNLL
#ReLU是目前使用做多的激励函数,主要因为其收敛更快,并且能保持同样效果。
#标准的ReLU函数为max(x, 0),而一般为当x > 0时输出x,但x <= 0时输出negative_slope。RELU层支持in-place计算,这意味着bottom的输出和输入相同以避免内存的消耗。
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
#Pooling 下采样层
#池化层
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
#pooling的方法,目前有MAX, AVE, 和STOCHASTIC三种方法
kernel_size: 3
# pool over a 3x3 region
stride: 2
# step two pixels (in the bottom blob) between pooling regions
}
}
layer {
#Local Response Normalization 
#局部输入区域归一化
#这里需要看公式,以下参数是指公式中的参数
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
#Common Layers
#全连接层 Inner Product
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
# learning rate multiplier for the filters
decay_mult: 1
# weight decay multiplier for the filters
}
param {
lr_mult: 2
# learning rate multiplier for the biases
decay_mult: 0
# weight decay multiplier for the biases
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
#丢弃数据的概率
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
#Loss Layers损耗层
#Accuracy准确率层(计算准确率)用来计算输出和目标的正确率
#事实上这不是一个loss,而且没有backward这一步。
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
#损失估计层
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}

这篇关于caffe CNN train_val.prototxt 神经网络参数配置说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061579

相关文章

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

Maven中的profiles使用及说明

《Maven中的profiles使用及说明》:本文主要介绍Maven中的profiles使用及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录主要用途定义 Profiles示例:多环境配置激活 Profiles示例:资源过滤示例:依赖管理总结Maven 中的