caffe CNN train_val.prototxt 神经网络参数配置说明

2024-06-14 21:38

本文主要是介绍caffe CNN train_val.prototxt 神经网络参数配置说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

name: "CaffeNet"
layer {
#输入层,即数据层
#数据层的类型除了Database外,还可以是In-Memory、HDF5 Input、HDF5 Output、Images、Windows、Dummy
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
#表示仅在训练阶段包括进去
}
transform_param {
#对数据进行预处理,依次是做镜像,设定crop大小,减去均值文件
mirror: true
crop_size: 60
mean_file: "/home/stack/caffe-master/data/HQPData/0902/img0902_mean.binaryproto"
}
data_param {
#设定数据来源
source: "/home/stack/caffe-master/examples/HuQPTask/0902/train_lmdb"
#包含数据的目录名称
batch_size: 50
#一次处理的输入的数量
backend: LMDB
#选择使用 LEVELDB 或者 LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: true
crop_size: 60
mean_file: "/home/stack/caffe-master/data/HQPData/0902/img0902_mean.binaryproto"
}
data_param {
source: "/home/stack/caffe-master/examples/HuQPTask/0902/val_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
#Convolution
#卷积层
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
#过滤器/权重 参数
lr_mult: 1
# learning rate multiplier for the filters
#学习率倍数
decay_mult: 1
# weight decay multiplier for the filters
#权重衰减率
}
param {
#偏置 参数
lr_mult: 2
# learning rate multiplier for the biases
#学习率倍数
decay_mult: 0
# weight decay multiplier for the biases
#权重衰减率
}
convolution_param {
num_output: 96
# learn 96 filters
kernel_size: 3
# each filter is 3x3
stride: 1
# step 1 pixels between each filter application
weight_filler {
#初始化权重/过滤器:均值默认为0,标准差0.01的高斯函数
type: "gaussian"
# initialize the filters from a Gaussian
std: 0.01
# distribution with stdev 0.01 (default mean: 0)  
}
bias_filler {
#初始化偏置:常数0
# initialize the biases to zero (0)
type: "constant"	  
value: 0
}
}
}
layer {
#Rectified-Linear and Leaky-ReLU 校正线性
#Activation / Neuron Layers 激励层,除了ReLu外,还可以用Sigmoid、TanH 、Absolute Value、Power、BNLL
#ReLU是目前使用做多的激励函数,主要因为其收敛更快,并且能保持同样效果。
#标准的ReLU函数为max(x, 0),而一般为当x > 0时输出x,但x <= 0时输出negative_slope。RELU层支持in-place计算,这意味着bottom的输出和输入相同以避免内存的消耗。
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
#Pooling 下采样层
#池化层
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
#pooling的方法,目前有MAX, AVE, 和STOCHASTIC三种方法
kernel_size: 3
# pool over a 3x3 region
stride: 2
# step two pixels (in the bottom blob) between pooling regions
}
}
layer {
#Local Response Normalization 
#局部输入区域归一化
#这里需要看公式,以下参数是指公式中的参数
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
#Common Layers
#全连接层 Inner Product
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
# learning rate multiplier for the filters
decay_mult: 1
# weight decay multiplier for the filters
}
param {
lr_mult: 2
# learning rate multiplier for the biases
decay_mult: 0
# weight decay multiplier for the biases
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
#丢弃数据的概率
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
#Loss Layers损耗层
#Accuracy准确率层(计算准确率)用来计算输出和目标的正确率
#事实上这不是一个loss,而且没有backward这一步。
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
#损失估计层
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}

这篇关于caffe CNN train_val.prototxt 神经网络参数配置说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061579

相关文章

SpringBoot改造MCP服务器的详细说明(StreamableHTTP 类型)

《SpringBoot改造MCP服务器的详细说明(StreamableHTTP类型)》本文介绍了SpringBoot如何实现MCPStreamableHTTP服务器,并且使用CherryStudio... 目录SpringBoot改造MCP服务器(StreamableHTTP)1 项目说明2 使用说明2.1

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以