caffe CNN train_val.prototxt 神经网络参数配置说明

2024-06-14 21:38

本文主要是介绍caffe CNN train_val.prototxt 神经网络参数配置说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

name: "CaffeNet"
layer {
#输入层,即数据层
#数据层的类型除了Database外,还可以是In-Memory、HDF5 Input、HDF5 Output、Images、Windows、Dummy
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
#表示仅在训练阶段包括进去
}
transform_param {
#对数据进行预处理,依次是做镜像,设定crop大小,减去均值文件
mirror: true
crop_size: 60
mean_file: "/home/stack/caffe-master/data/HQPData/0902/img0902_mean.binaryproto"
}
data_param {
#设定数据来源
source: "/home/stack/caffe-master/examples/HuQPTask/0902/train_lmdb"
#包含数据的目录名称
batch_size: 50
#一次处理的输入的数量
backend: LMDB
#选择使用 LEVELDB 或者 LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: true
crop_size: 60
mean_file: "/home/stack/caffe-master/data/HQPData/0902/img0902_mean.binaryproto"
}
data_param {
source: "/home/stack/caffe-master/examples/HuQPTask/0902/val_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
#Convolution
#卷积层
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
#过滤器/权重 参数
lr_mult: 1
# learning rate multiplier for the filters
#学习率倍数
decay_mult: 1
# weight decay multiplier for the filters
#权重衰减率
}
param {
#偏置 参数
lr_mult: 2
# learning rate multiplier for the biases
#学习率倍数
decay_mult: 0
# weight decay multiplier for the biases
#权重衰减率
}
convolution_param {
num_output: 96
# learn 96 filters
kernel_size: 3
# each filter is 3x3
stride: 1
# step 1 pixels between each filter application
weight_filler {
#初始化权重/过滤器:均值默认为0,标准差0.01的高斯函数
type: "gaussian"
# initialize the filters from a Gaussian
std: 0.01
# distribution with stdev 0.01 (default mean: 0)  
}
bias_filler {
#初始化偏置:常数0
# initialize the biases to zero (0)
type: "constant"	  
value: 0
}
}
}
layer {
#Rectified-Linear and Leaky-ReLU 校正线性
#Activation / Neuron Layers 激励层,除了ReLu外,还可以用Sigmoid、TanH 、Absolute Value、Power、BNLL
#ReLU是目前使用做多的激励函数,主要因为其收敛更快,并且能保持同样效果。
#标准的ReLU函数为max(x, 0),而一般为当x > 0时输出x,但x <= 0时输出negative_slope。RELU层支持in-place计算,这意味着bottom的输出和输入相同以避免内存的消耗。
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
#Pooling 下采样层
#池化层
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
#pooling的方法,目前有MAX, AVE, 和STOCHASTIC三种方法
kernel_size: 3
# pool over a 3x3 region
stride: 2
# step two pixels (in the bottom blob) between pooling regions
}
}
layer {
#Local Response Normalization 
#局部输入区域归一化
#这里需要看公式,以下参数是指公式中的参数
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
#Common Layers
#全连接层 Inner Product
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
# learning rate multiplier for the filters
decay_mult: 1
# weight decay multiplier for the filters
}
param {
lr_mult: 2
# learning rate multiplier for the biases
decay_mult: 0
# weight decay multiplier for the biases
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
#丢弃数据的概率
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
#Loss Layers损耗层
#Accuracy准确率层(计算准确率)用来计算输出和目标的正确率
#事实上这不是一个loss,而且没有backward这一步。
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
#损失估计层
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}

这篇关于caffe CNN train_val.prototxt 神经网络参数配置说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061579

相关文章

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方