【C语言】递归复杂度与链表OJ之双指针

2024-06-14 21:36

本文主要是介绍【C语言】递归复杂度与链表OJ之双指针,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【C语言】递归复杂度与链表OJ之双指针

🔥个人主页大白的编程日记

🔥专栏数据结构


文章目录

  • 【C语言】递归复杂度与链表OJ之双指针
    • 前言
    • 一.递归复杂度
      • 1.1递归时间复杂度
      • 1.2递归空间复杂度
    • 二.链表OJ之双指针
      • 2.1倒数第K个节点
      • 2.2链表的中间节点
      • 2.3反转链表
      • 2.4回文链表
      • 2.5相交链表
      • 双指针法
    • 后言

前言

哈喽,各位小伙伴大家好!今天我们继续深入探讨递归的复杂度和链表OJ常见的双指针法。话不多说,咱们进入正题!向大厂冲锋!

一.递归复杂度

1.1递归时间复杂度

前面我们讲的复杂度没有涉及到递归,那递归的复杂度又该如何计算呢?

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}


之前我们都是在一个函数中算时间算复杂度,但是递归会自己调用自己,所以递归的时间复杂度计算就需要把每次函数调用次数累加起来。

那我们现在修改一下代码,现在的时间复杂度又是多少呢?

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if (0 == N)return 1;for (int i = 0; i < N; i++){;}return Fac(N - 1) * N;
}


函数的调用次数不变,每次函数调用的复杂度改变。将每次函数调用的消耗相加
,时间复杂度函数为等差数列。大O渐进表示法算出O(N^2)。

结论:递归时间复杂度==所有递归递归调用次数累加。

现在我们再来计算一下斐波那契数列的时间复杂度。

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

这里我们需要画出递归展开图,然后发现调用次数是等比数列。
再用错位相减法计算调用次数即可。实际调用次数没那么多。
但是也是O(2^N)的量级。

1.2递归空间复杂度

那递归的复杂度又该如何计算呢?

  • 阶乘
    递归会调用函数,每次调用函数都会开辟栈帧。
    所以递归的空间复杂度是函数调用的次数。
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

  • 斐波那契数列
// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归是双倍递归,那他的空间复杂度该如何计算呢?

因为函数栈帧会重复利用,所以斐波那契数列的空间复杂度就是O(N)。

二.链表OJ之双指针

2.1倒数第K个节点

  • 题目
    倒数第k个节点

  • 思路分析


我们先让快慢指针拉开k步,当快指针到NULL节点,慢指针就是倒数第K个节点。

  • 代码
typedef struct ListNode ListNode;
int kthToLast(struct ListNode* head, int k)
{ListNode* slow,*fast;slow=fast=head;while(k--){fast=fast->next;}while(fast){fast=fast->next;slow=slow->next;}return slow->val;
}

2.2链表的中间节点

  • 题目
    链表的中间节点
  • 思路分析
    我们可以定义两个指针,一个每次走一步,一个每次走两步。

这就是我们的快慢指针。两个指针走的路程是2倍关系,当快指针走完时,慢指针也走了快指针的一半路程。

  • 代码
 typedef struct ListNode ListNode;
struct ListNode* middleNode(struct ListNode* head){//创建快慢指针struct ListNode* slow;struct ListNode* fast;slow=fast=head;while(fast&&fast->next){fast=fast->next->next;slow=slow->next;}//此时slow指向中间节点return slow;}

2.3反转链表

  • 题目
    反转链表
  • 思路
  • 我们创建三个节点指针n1,n2,n3。n1刚开始指向NULL,n2指向头节点,n3保存n2的下一个几点。每次都让n2指向n1,然后n1移动到n2,n2移动到n3.n3向后移动。当n2走到尾节点就完成反转。
  • 代码
 typedef struct ListNode ListNode;
struct ListNode* reverseList(struct ListNode* head) {if(head==NULL)return NULL;ListNode* n1=NULL;ListNode* n2=head;ListNode* n3=head->next;while(n2){n2->next=n1;n1=n2;n2=n3;if(n3)n3=n3->next;}return n1;
}

2.4回文链表

  • 题目
    回文链表

  • 思路

  • 我们先找到中间节点,反转以中间节点为头节点的子链表。然后分别从头节点和中间节点开始遍历,一一对比,当中间节点走到NULL时,说明是回文链表。
    在这里插入图片描述

  • 代码

typedef struct ListNode ListNode;struct ListNode* reverseList(struct ListNode* head)
{//创建三个指针ListNode *n1,*n2,*n3;n1=NULL;n2=head;if(n2)n3=n2->next;while(n2){n2->next=n1;n1=n2;n2=n3;if(n3)n3=n3->next;}return n1;
}
struct ListNode* middleNode(struct ListNode* head){//创建快慢指针struct ListNode* slow;struct ListNode* fast;slow=fast=head;while(fast&&fast->next){fast=fast->next->next;slow=slow->next;}//此时slow指向中间节点return slow;}
bool isPalindrome(struct ListNode* head) 
{ListNode* mid=middleNode(head);//找到中间节点ListNode* reverse=reverseList(mid);//反转后面节点ListNode*pcur=head;while(reverse){if(pcur->val!=reverse->val)//匹配{return false;break;}reverse=reverse->next;//移动pcur=pcur->next;}return true;
}

2.5相交链表

  • 题目
    相交链表

  • 思路

  • 判断相交
    分别遍历两个链表到尾节点,判断尾节点地址是否相等。相等就相交

  • 找交点
    让长链表走两链表长度的差距步,此时两节点距离交点差距相等。两节点同时往后遍历,相遇的位置就是交点。

  • 代码
typedef struct ListNode ListNode;
struct ListNode* getIntersectionNode(struct ListNode* headA,struct ListNode* headB) {int lena = 0, lenb = 0;ListNode* pa = headA;ListNode* pb = headB;while (pa->next){lena++;pa = pa->next;//遍历统计}while (pb->next){lenb++;pb = pb->next;//遍历统计}if (pb != pa) {return NULL;}ListNode* pshort = headA;ListNode* plong = headB;if (lena > lenb) //假设法{plong = headA;pshort = headB;}int tmp = abs(lena - lenb);while (tmp--) {plong = plong->next;//走差距步}while (plong!=pshort){pshort = pshort->next;plong = plong->next;}return plong;
}

双指针法

大家发现这些题目都会用到两个指针解决问题,这就是我们说的双指针法,具体如何运用双指针,得看具体题目灵活运用。

后言

这就是递归的复杂度和链表常见OJ。今天就分享到这里,感谢大家耐心垂阅。咱们下期见!拜拜~
在这里插入图片描述

这篇关于【C语言】递归复杂度与链表OJ之双指针的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061567

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)