文献合集 | 静息态功能连接和脑网络分析方法

2024-06-14 17:32

本文主要是介绍文献合集 | 静息态功能连接和脑网络分析方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。

静息态脑功能成像是脑功能磁共振成像方法的一种。正常人脑在静息态下依然存在有规律的功能活动网络,且病理状态下的脑功能活动网络与正常人脑存在差异及重塑,被检者处于静息状态下应用血氧水平依赖脑功能成像获得脑活动功能图的成像技术。无须进行复杂的任务设计,可操作性好,可避免基于任务的研究由于任务设计的不同及被检者执行情况的差异性导致的实验结果的不可比性。

以下就静息态功能磁共振成像,及其脑网络分析方法基于种子点方法(Seed-based)、图论(Graph theory)、独立成分分析(ICA以及不同的脑静息态网络列举相关文献,以供该领域的学者参考。

静息态功能磁共振成像(rs-fMRI)

1. Resting statefunctional magnetic resonance imaging:an emerging clinical tool.

doi:10.4103/0028-3886.111107

2. Clinical applicationsof resting state functional connectivity.

doi:10.3389/fnsys.2010.00019

3. Resting state activityin patients with disorders of consciousness.

doi:10.1016/j.yfrne.2010.11.002

4. Resting state fMRI: apersonal history.

doi:10.1016/j.neuroimage.2012.01.090

5. Brain work and brain imaging.

doi:10.1146/annurev.neuro.29.051605.112819

这里主要介绍几种处理静息态fMRI数据,检查脑区之间功能连接的存在和程度的方法,包括:基于种子点方法、图论、独立成分分析。

基于种子点的分析(Seed-based analysis):种子点可以是先验定义的区域,或者可以从任务态fMRI实验中获得的激活图中选择,从而确定特定的感兴趣区域。

1. Functional connectivity in the motor cortex of resting human brain usingecho-planar MRI.

doi: 10.1002/mrm.1910340409

2. Exploring the brain network: a review on resting-state fMRI functionalconnectivity.

doi: 10.1016/j.euroneuro.2010.03.008

3. Review of methods for functional brain connectivity detection using fMRI.

doi: 10.1016/j.compmedimag.2008.10.011

4. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-statefMRI.

doi: 10.3389/fnsys.2010.00013

5. Abnormal spontaneous brain activity in minimal hepatic encephalopathy:resting-state fMRI study.

doi: 10.5152/dir.2015.15208

6. A multisite resting state fMRI study on the amplitude of low frequencyfluctuations in schizophrenia.

doi: 10.3389/fnins.2013.00137

7. Regional homogeneity approach to fMRI data analysis.

doi:10.1016/j.neuroimage.2003.12.030

8. Competition between functional brain networks mediates behavioralvariability.

doi: 10.1016/j.neuroimage.2007.08.008

9. REST: a toolkit for resting-state functional magnetic resonance imagingdata processing.

doi: 10.1371/journal.pone.0025031

图论(Graph theory):人脑形成一个集成的复杂网络,将所有脑区和子网络连接到一个复杂的系统中。使用图论分析方法可以检查大脑网络的整体结构,图论提供了一个理论框架,其中可以检查复杂网络的拓扑,并且可以揭示有关功能脑网络局部和全局的信息。

1. Social network analysis: a methodological introduction.

doi: 10.1111/j.1467-839X.2007.00241.x

2. A computational study of whole-brain connectivity in resting state andtask fMRI.

doi: 10.12659/MSM.891142

3. Brain connectivity in autism.

doi:10.3389/fnhum.2014.00349

4. Development of large-scale functional brain networks in children.

doi: 10.1371/journal.pbio.1000157

5. Complex brain networks: graph theoretical analysis of structural andfunctional systems.

doi: 10.1038/nrn2618

6. Efficiency and cost of economical brain functional networks.

doi: 10.1371/journal.pcbi.0030017

7. Efficient behavior of smallworld networks.

doi: 10.17877/DE290R-11359

8. Graph-based network analysis of resting-state functional MRI.

doi: 10.3389/fnsys.2010.00016

9. The ubiquity of small-world networks.

doi: 10.1089/brain.2011.0038

独立成分分析(Independent component analysisICA):静息态fMRI的ICA是一种盲源分离方法,主要是从静息态中分离出相互独立的源。这个方法可以应用于全脑功能连接,将fMRI分离出大尺度脑网络。

1. Exploring the brain network: a review on resting-state fMRI functionalconnectivity.

doi: 10.1016/j.euroneuro.2010.03.008

2. Advances and pitfalls in the analysis and interpretation of restingstatefMRI data.

doi: 10.3389/fnsys.2010.00008

3. An information-maximization approach to blind separation and blinddeconvolution.

doi: 10.1162/neco.1995.7.6.1129

4. Analysis of fMRI data by blind separation into independent spatialcomponents.

doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1

5. Intrinsic brain activity in altered states of consciousness: howconscious is the default mode of brain function?

doi: 10.1196/annals.1417.015

6. Group comparison of resting-state FMRI data using multi-subject ICA anddual regression.

doi: 10.1016/S1053-8119(09)71511-3

7. A review of group ICA for fMRI data and ICA for joint inference ofimaging, genetic, and ERP data.

doi: 10.1016/j.neuroimage.2008.10.057

8. A unified framework for group independent component analysis formulti-subject fMRI data.

doi: 10.1016/j.neuroimage.2008.05.008

9. Independent component analysis of fMRI group studies by self-organizingclustering.

doi: 10.1016/j.neuroimage.2004.10.042

10. Comparison of three methods for generating group statistical inferencesfrom independent component analysis of functional magnetic resonance imagingdata.

doi: 10.1002/jmri.20009

以下是关于不同的脑静息态网络,如突显网络、听觉网络、基底神经节网络、视觉网络、视觉空间网络、默认模式网络、语言网络、执行网络&执行控制网络、楔前叶网络、感觉运动网络等相关文献合集。

突显网络

1. Cognitive Control and the Salience Network: An Investigation of ErrorProcessing and Effective Connectivity.

doi: 10.1523/JNEUROSCI.4692-12.2013

2. Salience processing and insular cortical function and dysfunction.

doi: 10.1038/nrn3857

3. Saliency, switching, attention and control: a network model of insulafunction.

doi: 10.1007/s00429-010-0262-0

听觉网络

1. Asymmetric Interhemispheric Transfer in the Auditory Network: Evidencefrom TMS, Resting-State fMRI, and Diffusion Imaging.

       doi: 10.1523/JNEUROSCI.2333-15.2015

2. Default Mode, Dorsal Attention and Auditory Resting State NetworksExhibit Differential Functional Connectivity in Tinnitus and Hearing Loss.

       doi: 10.1371/journal.pone.007648

基底神经节网络

1. Aberrant functional connectivity within the basal ganglia of patientswith Parkinson’s disease.

doi: 10.1016/j.nicl.2015.04.003

2. Functional connectivity in the basal ganglia network differentiates PDpatients from controls.

doi: 10.1212/wnl.0000000000000592

3. Identifying the Basal Ganglia Network Model Markers forMedication-Induced Impulsivity in Parkinson's Disease Patients.

doi: 10.1371/journal.pone.0127542

4. The basal ganglia: A neural network with more than motor function.

doi: 10.1016/S1071-9091(02)00003-7

视觉网络

1. Consistent resting-state networks across healthysubjects.

doi: 10.1073/pnas.0601417103

2. Investigations into resting-stateconnectivity using independent component analysis.

doi: 10. 1098/rstb.2005.1634

3. Spontaneous Activity Associated with PrimaryVisual Cortex: A Resting-State fMRI Study.

doi: 10.1093/cercor/bhm105

视觉空间网络

1. Default-mode network activity distinguishes Alzheimer’sdisease from healthy aging: Evidence from functional MRI.

doi: 10.1073/pnas.0308627101

2. Functional connectivity in the resting brain: A network analysis of thedefault mode hypothesis.

doi: 10.1073/pnas.0135058100

3. Investigations into Resting-State Connectivity Using IndependentComponent Analysis.

doi: 10.1098/rsbt.2005.1634

4. Searching for a baseline: functional imaging andthe resting human brain.

doi: 10.1038/35094500

默认模式网络

1. Development of the Default Mode and CentralExecutive Networks across early adolescence: A longitudinal study.

       doi: 10.1016/j.dcn.2014.08.002

2. Searching for a baseline: functional imaging and the resting human brain.

     doi: 10.1038/35094500

语言网络

1. Evidenceof Mirror Neurons in Human Inferior Frontal Gyrus.

doi: 10.1523/JNEUROSCI.2668-09.2009

2. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvementin Oral Language.

doi: 10.1093/arclin/acv081

3. Mirror Neurons and the Lateralization of Human Language.

doi: 10.1523/JNEUROSCI.1452-06.2006

4. Speech-associated gestures, Broca’s area, and the human mirror system.

doi: 10.1016/j.bandl.2007.02.008

执行网络&执行控制网络

1. ConceptualProcessing during the Conscious Resting State: A Functional MRI Study.

doi: 10.1162/089892999563265

2. Dissociable Intrinsic Connectivity Networks for Salience Processing andExecutive Control.

doi: 10.1523/JNEUROSCI.5587-06.2007

3. Resting-state activity in the left executive control network isassociated with behavioral approach and is increased in substance dependence.

doi: 10.1016/j.drugalcdep.2014.02.320

4. Searching for Activations That Generalize Over Tasks.

doi: 10.1002/(SICI)1097-0193(1997)5:4<317::AID-HBM19>3.0.CO;2-A

5. The Human Brain Is Intrinsically Organized into Dynamic, AnticorrelatedFunctional Networks.

doi: 10.1073/pnas.0504136102

楔前叶网络

1. Posterior Cingulate Cortex Activation by EmotionalWords: fMRI Evidence From a Valence Decision Task.

doi: 10.1002/hbm.10075

2. Posterior Cingulate Cortex Mediates Outcome-Contingent Allocation ofBehavior.

doi: 10.1016/j.neuron.2008.09.012

3. Precuneus Is a Functional Core of the Default-Mode Network.

doi: 10.1523/JNEUROSCI.4227-13.2014

4. Remembering familiar people: the posterior cingulate cortex andautobiographical memory retrieval.

doi: 10.1016/S0306-4522(01)00108-7

5. The precuneus/posterior cingulate cortex plays a pivotal role in thedefault mode network: Evidence from a partial correlation network analysis.

doi: 10.1016/j.neuroimage.2008.05.059

6. The precuneus: a review of its functional anatomy and behaviouralcorrelates.

doi: 10.1093/brain/awl004

感觉运动网络

1. A small number of abnormal brain connections predictsadult autism spectrum disorder.

doi: 10.1038/ncomms11254

2. Functional Connectivity in the Motor Cortex of Resting Human Brain UsingEcho-Planar MRI.

doi: 10.1002/mrm.1910340409

3. Identifying patients with Alzheimer’s disease using resting-state fMRI andgraph theory.

doi: 10.1016/j.clinph.2015.02.060

4. Recovery of resting brain connectivity ensuing mild traumatic braininjury.

doi: 10.3389/fnhum.2015.00513

这篇关于文献合集 | 静息态功能连接和脑网络分析方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061056

相关文章

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔