F2FS源码分析-6.6 [其他重要数据结构以及函数] F2FS的重命名过程-f2fs_rename函数

本文主要是介绍F2FS源码分析-6.6 [其他重要数据结构以及函数] F2FS的重命名过程-f2fs_rename函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

F2FS源码分析系列文章
主目录
一、文件系统布局以及元数据结构
二、文件数据的存储以及读写
三、文件与目录的创建以及删除(未完成)
四、垃圾回收机制
五、数据恢复机制
六、重要数据结构或者函数的分析
  1. f2fs_summary的作用
  2. f2fs_journal的作用
  3. f2fs_map_block的作用
  4. get_dnode_of_data的作用
  5. get_node_page的作用(未完成)

F2FS的rename流程

rename流程介绍

  1. sys_rename函数
  2. do_renameat2函数
  3. vfs_rename函数
  4. f2fs_rename函数

sys_rename函数

sys_rename函数是一个系统调用,是rename函数进入内核层的第一个函数:

SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
{// AT_FDCWD表示以相对路径的方法找oldname和newname这个文件,flags=0return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
}

do_renameat2函数

do_renameat2函数比较长,考虑多个输入flag的作用,这里只考虑sys_rename函数rename一个文件的情形,即flag=0,并以此精简函数。

static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,const char __user *newname, unsigned int flags)
{struct dentry *old_dentry, *new_dentry;struct dentry *trap;struct path old_path, new_path;struct qstr old_last, new_last;int old_type, new_type;struct inode *delegated_inode = NULL;struct filename *from;struct filename *to;unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;bool should_retry = false;int error;retry:// 接下来两个函数最重要的作用是根据oldname和newname找到父目录的dentry结构// 这两个dentry结构保存在old_path和new_path中(注意是父目录的dentry)from = filename_parentat(olddfd, getname(oldname), lookup_flags,&old_path, &old_last, &old_type);to = filename_parentat(newdfd, getname(newname), lookup_flags,&new_path, &new_last, &new_type);retry_deleg:// 这个函数会触发一个全局的rename的互斥锁,然后锁两个父目录inode结构trap = lock_rename(new_path.dentry, old_path.dentry);// 根据old path的父目录找到需要被rename的文件的dentryold_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);// 根据new path的父目录找到或创建新的dentrynew_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);// 调用vfs_rename函数进行重命名// 传入的是新旧两个目录的inode,以及需要重命名的两个dentry, flags = 0error = vfs_rename(old_path.dentry->d_inode, old_dentry,new_path.dentry->d_inode, new_dentry,&delegated_inode, flags);dput(new_dentry);dput(old_dentry);// 解锁全局rename互斥锁,释放两个inode锁unlock_rename(new_path.dentry, old_path.dentry);path_put(&new_path);putname(to);path_put(&old_path);putname(from);
exit:return error;
}

vfs_rename函数

vfs_rename函数也会做简化,简化的情形是将文件A重命名到文件B (B可能已经存在,或者不存在),flags=0。

int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,struct inode *new_dir, struct dentry *new_dentry,struct inode **delegated_inode, unsigned int flags)
{int error;bool is_dir = d_is_dir(old_dentry);struct inode *source = old_dentry->d_inode; // 旧文件inodestruct inode *target = new_dentry->d_inode; // 新文件inodebool new_is_dir = false;unsigned max_links = new_dir->i_sb->s_max_links;struct name_snapshot old_name;dget(new_dentry); // 对新文件的引用计数+1if (target)inode_lock(target); // 如果新文件已经存在,则上锁error = old_dir->i_op->rename(old_dir, old_dentry,new_dir, new_dentry, flags);out:if (target)inode_unlock(target); // 如果新文件已经存在,则解锁dput(new_dentry); // 对新文件的引用计数-1return error;
}

f2fs_rename函数

f2fs_rename函数也会做简化,简化的情形是将文件A重命名到文件B (B可能已经存在,或者不存在),flags=0。

static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,struct inode *new_dir, struct dentry *new_dentry,unsigned int flags)
{struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);struct inode *old_inode = d_inode(old_dentry);struct inode *new_inode = d_inode(new_dentry);struct inode *whiteout = NULL;struct page *old_dir_page;struct page *old_page, *new_page = NULL;struct f2fs_dir_entry *old_dir_entry = NULL;struct f2fs_dir_entry *old_entry;struct f2fs_dir_entry *new_entry;bool is_old_inline = f2fs_has_inline_dentry(old_dir);int err;// 输入显然是// 旧的父目录old_dir,旧的文件old_dentry// 新的父目录new_dir,新的文件new_dentry// 根据旧文件的名字找到对应的f2fs_dir_entry,old_page保存的是磁盘上的dir_entry数据old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);if (new_inode) { // 如果新文件已经存在// 根据新文件的名字找到对应的f2fs_dir_entry,new_page保存的是磁盘上的数据new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,&new_page);// F2FS获取一个全局读信号量f2fs_lock_op(sbi);// 在管理orphan inode的全局结构中,将orphan inode的数目+1。err = f2fs_acquire_orphan_inode(sbi);// 这里进行新旧inode的link的变化:// 将new_dentry所属的inode指向old_inode// 因为rename的时候新inode是已经存在了,因此rename的操作就是将// 新路径原来的inode无效掉,然后替换为旧路径的inodef2fs_set_link(new_dir, new_entry, new_page, old_inode);new_inode->i_ctime = current_time(new_inode);down_write(&F2FS_I(new_inode)->i_sem); // 拿写信号量// 减少新inode一个引用计数,因为被rename了f2fs_i_links_write(new_inode, false);up_write(&F2FS_I(new_inode)->i_sem); // 释放写信号量// 如果引用计数下降到0,则添加到orphan inode中,在checkpoint管理if (!new_inode->i_nlink)f2fs_add_orphan_inode(new_inode);elsef2fs_release_orphan_inode(sbi); // 否则管理结构将orphan inode的数目-1。} else {// 这个情况是新路径的Inode不存在// F2FS获取一个全局读信号量f2fs_lock_op(sbi);// 由于新inode是不存在的,因此直接将旧inode添加到新的f2fs_dir_entry中err = f2fs_add_link(new_dentry, old_inode);}down_write(&F2FS_I(old_inode)->i_sem);if (!old_dir_entry || whiteout)file_lost_pino(old_inode);  // 这个操作要保留着用于数据恢复elseF2FS_I(old_inode)->i_pino = new_dir->i_ino;up_write(&F2FS_I(old_inode)->i_sem);old_inode->i_ctime = current_time(old_inode);f2fs_mark_inode_dirty_sync(old_inode, false);// 新的数据已经加入到新的f2fs_dir_entry,因此旧entry就去去除掉f2fs_delete_entry(old_entry, old_page, old_dir, NULL);// F2FS释放全局读信号量f2fs_unlock_op(sbi);f2fs_update_time(sbi, REQ_TIME);return 0;
}

这篇关于F2FS源码分析-6.6 [其他重要数据结构以及函数] F2FS的重命名过程-f2fs_rename函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060107

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数