python数据分析-淘票票电影可视化

2024-06-14 09:28

本文主要是介绍python数据分析-淘票票电影可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、研究背景和意义

在当今数字化和媒体饱和的时代,电影产业不仅是文化的重要组成部分,也是全球经济的一大推动力。电影不仅能够反映社会现实和文化趋势,还能预示和塑造公众的兴趣与期待。因此,深入分析电影数据集具有重要的实践和理论意义。通过对电影数据进行描述性统计分析,在电影数据集的分析过程中,描述性统计分析提供了一个宏观的视角,揭示了电影行业的基本运行模式和市场表现。进一步地,而在机器学习领域,随机森林模型的应用则开启了预测电影市场行为的新篇章。。。

二、数据集介绍

淘票票平台的电影数据集提供了一个独特的视角,让我们能够深入探究中国电影市场的复杂性与动态变化。这份数据集汇集了从2000年至2020年间上映的250部影片的详尽信息

三、描述性统计分析与可视化

首先导入基本的画图的包

# 导入基本的画图的包
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sns 
import datetime
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文

读取 CSV 文件并且展示数据前五行: 

# 读取 CSV 文件
movies_data = pd.read_csv('movies.csv')
movies_data.head()

数据和完整代码

报告代码数据 

 随后对数据进行描述性统计分析:

统计分析覆盖了五个不同的数值变量:票房(亿)、平均票价、平均人次、年份和月份。对于每个变量,提供了以下统计指标:count:每个变量的观测值数量,此处每个变量均为250个观测值。mean:平均值,反映了中心趋势。

查看数据基础信息:

接下来查看缺失值: 

###数据预处理
#观察缺失值
import missingno as msno
msno.matrix(movies_data)

 

 

从上面可以看出,数据集比较完整,数据没有缺失值。

接下来对数据进行可视化分析部分:

# 散点图:票房与平均票价的关系
sns.scatterplot(data=movies_data, x='平均票价', y='票房(亿)', ax=axes[0, 0])
axes[0, 0].set_title('票房与平均票价的关系')
axes[0, 0].set_xlabel('平均票价')
axes[0, 0].set_ylabel('票房(亿)')

 

在上图所示的票房与平均票价的散点图中,我们可以观察到平均票价与票房之间的一种关联模式:随着平均票价的上升,票房也显示出增长趋势。这样的电影往往伴随着大规模的宣传和营销活动,能够吸引大量观众进电影院,从而推动高票房收入的产生。 

 

在上图展现的年度票房总和的时间序列图中,通过一条清晰的折线,我们能够追踪2000年至2020年20年间电影票房的发展轨迹。这个图形不仅揭示了整体上升的大趋势,而且还描绘出了一些特别的增长时期,如2000年末至2010年期间的快速上升,以及2015年后的另一轮显著增长。 

 

上图是电影平均人次的直方图,上面叠加了一个拟合的概率密度曲线。这个图表显示了电影平均人次的分布情况。直方图显示,电影的平均人次集中在较低的范围内,大多数电影的平均人次在30次以下,呈现出接近正态分布的形态。

 

plt.figure(figsize=(10, 6))
movies_per_year = movies_df['年份'].value_counts()
plt.pie(movies_per_year, labels=movies_per_year.index, autopct='%1.1f%%', startangle=90)
plt.title('每年电影数量分布')
plt.show()

 

柱状图上的误差线提供了关于每月平均票价变异性的信息。从图中可以观察到,虽然各月份的平均票价相差不大,但仍有一定的波动,这可能受到季节性因素和不同月份电影类型及数量的影响。 

接下来使用相关性热力图看一下个特征之间的关系:

 

这显示了一个相关性热力图,它展示了电影数据集中几个数值变量之间的相关性系数。热力图的颜色变化从红色到蓝色代表了相关性系数的范围,红色表示正相关,蓝色表示负相关,颜色的饱和度表示相关性的强度。

四、时间序列方法研究和分析

 接下来使用使用时间序列方法中的移动平均来平滑数据,这可以帮助我们更好地理解票房随时间的整体趋势。

# 计算年度票房的移动平均值
movies_data['年份'] = movies_data.index.year
yearly_box_office = movies_data.groupby('年份')['票房(亿)'].sum()
rolling_mean = yearly_box_office.rolling(window=3).mean()

上图显示了两条趋势线:一条表示原始数据的年度票房总和,另一条表示通过移动平均方法平滑后的数据。从图中可以看出,原始数据的趋势线(实线)在某些年份出现了尖峰或下降,这可能是由于特定的市场事件、重大电影发布或外部经济因素造成的。。。。

移动平均是一种常用的数据分析技术,特别是在时间序列数据分析中,它可以帮助分析师识别和跟踪数据的长期趋势和周期性模式。通过对原始数据应用移动平均,我们可以更清晰地看到总体的增长趋势,以及潜在的上升或下降周期。这种分析方法对于市场分析师、投资者和决策者来说是非常有价值的,因为它提供了对未来市场动态的洞见,有助于做出更加信息化的决策。 

五、随机森林模型预测与分析

接下来使用随机森林模型来预测,其中票房为响应变量,其他为特征,训练集测试集划分比例为7:3,具体代码如下:

# 创建并训练随机森林回归模型
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = rf_model.predict(X_test)# 计算模型性能指标
mse_rf = mean_squared_error(y_test, y_pred)
r2_rf = r2_score(y_test, y_pred)# 可视化预测结果与实际值
plt.figure(figsize=(12, 6))
plt.scatter(y_test, y_pred, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2) # 对角线
plt.xlabel('实际票房')
plt.ylabel('预测票房')
plt.title('随机森林回归模型的预测效果')
plt.show()

该散点图显示了预测值和实际值之间的关系,并配有一条拟合线。这条拟合线表示的是变量之间的线性关系,而散点图上的点代表观测数据。

 在这个图表中,R²分数是0.997,这意味着模型的预测非常准确,而MSE的值很低(0.169),表明模型的预测误差较小。这样的结果通常表明模型在统计上是成功的,能够很好地捕捉到数据中的模式和关系。

六、文本分析与可视化

接下来针对标题长度分布做一个文本分析:

从这个柱状图中,我们可以看到大多数电影的标题长度集中在较短的区间内,尤其是在4到6个字符之间的标题数量最多,这可能表明在电影标题的设计上倾向于简洁明了,以便观众容易记忆和识别。 

七、总结和展望

总结以上分析,我们可以看到数据科学在电影产业中的应用是多方面的,从基础的统计分析到复杂的机器学习模型,都能提供有价值的见解。描述性统计帮助我们理解了市场的基本面貌,时间序列分析揭示了电影票房的动态趋势,随机森林模型使我们能够预测并理解电影成功的驱动因素,而文本分析提供了对市场营销策略的深入理解。

展望未来,随着数据科学技术的进步和数据收集能力的提高,我们可以预期在电影产业中的数据分析会更加精细化和个性化。。。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

这篇关于python数据分析-淘票票电影可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060012

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: