codeforces 372C Watching Fireworks is Fun 单调队列优化dp

2024-06-14 09:18

本文主要是介绍codeforces 372C Watching Fireworks is Fun 单调队列优化dp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:一个城镇有n个区域,从左到右1-n,每个区域之间距离1个单位距离。节日中有m个烟火要放,给定放的地点a[ i ]、时间t[ i ] ,如

果你当时在区域x,那么你可以获得b[ i ] - | a[ i ] - x |的happiness 。你每个单位时间可以移动不超过d个单位距离,你的初始位置是任意

的,求你通过移动能获取到的最大的happiness值。


思路: 首先设dp[i][  j ]为到放第i个烟花的时候站在j的位置可以获得的最大happiness。那么我们可以很容易写出转移方程:

dp[ i ] [ j ] =max(dp[ i - 1] [ k ]) + b[ i ]  - | a[ i ] - j | ,其中  max(1,j-t*d)<=k<=min(n,j+t*d) 。不过我们可以发现b[ i ]是固定的,那么我们转化

为求所有| a[ i ] - x |的最小值,即dp[ i ] [ j ] 表示到第i个烟花的时候站在j的位置可以获得的最小的累加值,转移方程:

dp[ i ] [ j ] =min(dp[ i - 1] [ k ])+ | a[ i ] - j | ,其中  max(1,j-t*d)<=k<=min(n,j+t*d)。由于是求一段区间的最小值,我们可以想到用单调队列

维护,维护一个单调升的队列。不过这题有一点不同的是对于当前考虑的位置i来说其右端的点也需要考虑是否进入队列,假设当前考

虑位置i,所需维护区间长度为l,如果i+l<=n,那么看他是否能丢进队列。 还有一点需要注意,因为n、m都很大,所以直接开二维肯定

炸内存,所以要用滚动数组优化下,详见代码:

// file name: codeforces372C.cpp //
// author: kereo //
// create time:  2014年08月24日 星期日 10时23分06秒 //
//***********************************//
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN=150000+100;
const int inf=0x3fffffff;
#define L(x) (x<<1)
#define R(x) (x<<1|1)
int n,m,d,head,tail;
int a[MAXN],b[MAXN],t[MAXN];
ll dp[2][MAXN];
struct node
{int index;ll val;
}que[MAXN];
int main()
{while(~scanf("%d%d%d",&n,&m,&d)){ll ans=0;for(int i=1;i<=m;i++){scanf("%d%d%d",&a[i],&b[i],&t[i]);ans+=b[i];}for(int i=1;i<=n;i++) dp[0][i]=abs(a[1]-i);int now=0;ll k;//可以移动的最大距离for(int j=2;j<=m;j++){k=t[j]-t[j-1]; k*=d;if(k>n) k=n;head=tail=0;for(int i=1;i<=k;i++){while(head<tail && dp[now][i]<que[tail-1].val) tail--;que[tail].val=dp[now][i]; que[tail++].index=i;}for(int i=1;i<=n;i++){int l,r;l=i-k;r=i+k;if(l<=0) l=1;while(head<tail && que[head].index<l) head++;if(r<=n){while(head<tail && dp[now][r]<que[tail-1].val) tail--;que[tail].val=dp[now][r]; que[tail++].index=r;}dp[now^1][i]=que[head].val+abs(a[j]-i);}now^=1;}ll Min=dp[now][1];for(int i=2;i<=n;i++)Min=min(Min,dp[now][i]);cout<<ans-Min<<endl;}return 0;
}




这篇关于codeforces 372C Watching Fireworks is Fun 单调队列优化dp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059992

相关文章

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分