动态规划法学习

2024-06-13 23:36
文章标签 动态 学习 规划法

本文主要是介绍动态规划法学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当然,让我们用更生活化的语言和一个实际的例子来解释动态规划,以及如何在实践中应用它。

动态规划通俗理解

想象一下,你是个水果摊老板,每天要决定订购多少苹果,目标是最大化利润。但苹果的价格每天波动,顾客的需求也变化,你该怎么办?

传统做法:每天早上,你都根据昨天的经验和今天的感觉猜测需求,然后订购苹果。但如果猜错,要么苹果卖不完亏本,要么不够卖错过赚钱机会。

动态规划做法:你开始记录每一天的销售数据,包括苹果价格、天气、节假日等因素。第二天,你不再凭感觉,而是根据历史数据预测需求,再决定订购量。因为你“记得”过去的经验,所以可以做出更精准的决策,减少浪费,增加利润。

实践过程详解

以经典的背包问题为例,假设你是个旅行者,背包容量有限,你要从一堆物品中选择装入背包,每件物品有重量和价值,你的目标是让背包里物品的总价值最大,但不超过背包容量。

步骤1:定义问题
  • 状态:背包当前的剩余容量,已经选了哪些物品。
  • 目标:背包内物品价值最大化。
步骤2:构建状态转移方程
  • 假设 d p [ i ] [ j ] dp[i][j] dp[i][j]表示前i件物品装入容量为j的背包中的最大价值。
  • 状态转移方程为: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i]) dp[i][j]=max(dp[i1][j],dp[i1][jweight[i]]+value[i]),其中 w e i g h t [ i ] weight[i] weight[i] v a l u e [ i ] value[i] value[i]分别是第i件物品的重量和价值。
状态定义

我们定义 d p [ i ] [ j ] dp[i][j] dp[i][j]表示考虑前 i i i个物品,且背包容量为 j j j时,所能达到的最大价值。

状态转移方程

状态转移方程是这样的:

d p [ i ] [ j ] = max ⁡ ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w i ] + v i ) dp[i][j] = \max(dp[i-1][j], dp[i-1][j-w_i] + v_i) dp[i][j]=max(dp[i1][j],dp[i1][jwi]+vi)

这里:

  • d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 表示不拿第 i i i个物品,此时最大价值就是前 i − 1 i-1 i1个物品在容量为 j j j的背包下的最大价值。
  • d p [ i − 1 ] [ j − w i ] + v i dp[i-1][j-w_i] + v_i dp[i1][jwi]+vi表示拿了第 i i i个物品,此时背包剩余容量为 j − w i j-w_i jwi w i w_i wi是第$ 个物品的重量),然后加上第 个物品的重量),然后加上第 个物品的重量),然后加上第i$个物品的价值 v i v_i vi
方程解读

这个方程意味着我们在考虑第 i i i个物品时,有两种选择:

  1. 不拿第 i i i个物品:此时最大价值取决于前 i − 1 i-1 i1个物品在容量为 j j j的背包下能达到的最大价值,即 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j]
  2. 拿第 i i i个物品:此时我们需要确保背包容量足够装下这个物品,即 j > = w i j >= w_i j>=wi。在这种情况下,我们的最大价值由前 i − 1 i-1 i1个物品在剩余容量 j − w i j-w_i jwi下的最大价值加上第 i i i个物品的价值组成,即 d p [ i − 1 ] [ j − w i ] + v i dp[i-1][j-w_i] + v_i dp[i1][jwi]+vi

最终,我们取这两种选择中价值更大的那个作为 d p [ i ] [ j ] dp[i][j] dp[i][j]的值。

步骤3:初始化边界条件
  • 当背包容量为0或没有物品时,价值为0,即 d p [ 0 ] [ j ] = 0 dp[0][j] = 0 dp[0][j]=0 d p [ i ] [ 0 ] = 0 dp[i][0] = 0 dp[i][0]=0
步骤4:计算
  • d p [ 0 ] [ 0 ] dp[0][0] dp[0][0]开始,按行或列递增地填充整个二维数组,直到得到 d p [ n ] [ W ] dp[n][W] dp[n][W],即为所求的最大价值。
实践注意点
  1. 状态定义要准确:状态必须包含足够的信息来描述问题,但又不能过于复杂,否则计算量会很大。
  2. 避免重复计算:动态规划的核心是记忆化,即保存已计算的状态,避免重复计算相同的子问题。
  3. 边界条件:正确的边界条件是关键,否则可能导致整个解法失效。
  4. 空间优化:有时可以通过观察状态转移方程,仅保留必要的状态信息,减少内存消耗。

结语

动态规划就像一个智慧的决策者,它通过分析过去的“经验”(子问题的解),来做出更好的“未来决策”(解决大问题)。在实践中,清晰的状态定义、有效的状态转移方程和合理的边界条件是成功应用动态规划的关键。希望这次解释能帮助你更好地理解和掌握动态规划!

这篇关于动态规划法学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058750

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

基于Nacos实现SpringBoot动态定时任务调度

《基于Nacos实现SpringBoot动态定时任务调度》本文主要介绍了在SpringBoot项目中使用SpringScheduling实现定时任务,并通过Nacos动态配置Cron表达式实现任务的动... 目录背景实现动态变更定时机制配置化 cron 表达式Spring schedule 调度规则追踪定时

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到