【因果推断python】32_合成控制2

2024-06-13 21:52

本文主要是介绍【因果推断python】32_合成控制2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

合成控制作为线性回归的一种实现​编辑


合成控制作为线性回归的一种实现

为了估计综合控制的治疗效果,我们将尝试构建一个类似于干预期之前的治疗单元的“假单元”。然后,我们将看到这个“假单位”在干预后的表现。合成控制和它所模仿的单位之间的区别在于治疗效果。

要使用线性回归做到这一点,我们将使用 OLS 找到权重。我们将最小化干预前期间供体池中单位的加权平均值与治疗单位之间的平方距离。

为此,我们需要的第一件事是将单位(在我们的例子中为状态)转换为列,将时间转换为行。由于我们有 2 个功能,cigsale 和 retprice,我们将它们堆叠在一起,就像我们在上图中所做的那样。我们将建立一个在干预前看起来很像加利福尼亚的合成控制,并看看它在干预后的表现如何。出于这个原因,重要的是我们只选择干预前的时期。在这里,这些功能似乎具有相似的规模,因此我们不会对它们做任何事情。如果特征的比例不同,一个是千位,另一个是小数,在最小化差异时,较大的特征将是最重要的。为避免这种情况,首先对它们进行扩展很重要。

features = ["cigsale", "retprice"]inverted = (cigar.query("~after_treatment") # filter pre-intervention period.pivot(index='state', columns="year")[features] # make one column per year and one row per state.T) # flip the table to have one column per stateinverted.head()

现在,我们可以将 Y 变量定义为加利福尼亚州,将 X 定义为其他州。

y = inverted[3].values # state of california
X = inverted.drop(columns=3).values  # other states

然后,我们运行回归。 有一个截距相当于添加另一个状态,其中每一行都是 1。你可以这样做,但我认为它更复杂,我就省略了。 回归将返回一组权重,以最小化治疗单位与供体池中单位之间的平方差。

from sklearn.linear_model import LinearRegression
weights_lr = LinearRegression(fit_intercept=False).fit(X, y).coef_
weights_lr.round(3)array([-0.436, -1.038,  0.679,  0.078,  0.339,  1.213,  0.143,  0.555,-0.295,  0.052, -0.529,  1.235, -0.549,  0.437, -0.023, -0.266,-0.25 , -0.667, -0.106, -0.145,  0.109,  0.242, -0.328,  0.594,0.243, -0.171, -0.02 ,  0.14 , -0.811,  0.362,  0.519, -0.304,0.805, -0.318, -1.246,  0.773, -0.055, -0.032])

这些权重向我们展示了如何构建合成控制。 我们将状态 1 的结果乘以 -0.436,状态 2 的结果乘以 -1.038,状态 4 的结果乘以 0.679,依此类推。 我们可以通过池中状态的矩阵和权重之间的点积来实现这一点。

calif_synth_lr = (cigar.query("~california").pivot(index='year', columns="state")["cigsale"].values.dot(weights_lr))

现在我们有了合成控制,我们可以用加利福尼亚州的结果变量来绘制它。

plt.figure(figsize=(10,6))
plt.plot(cigar.query("california")["year"], cigar.query("california")["cigsale"], label="California")
plt.plot(cigar.query("california")["year"], calif_synth_lr, label="Synthetic Control")
plt.vlines(x=1988, ymin=40, ymax=140, linestyle=":", lw=2, label="Proposition 99")
plt.ylabel("Gap in per-capita cigarette sales (in packs)")
plt.legend();

好吧……似乎有些不对劲。这张照片中什么吸引了你的注意力?首先,干预后,合成控制的卷烟销量超过了加州。这表明干预措施成功地降低了卷烟需求。其次,注意干预前的时期是如何完美拟合的。合成控制能够与加利福尼亚州完全匹配。这表明我们的综合控制模型可能过度拟合数据。另一个迹象是干预后综合控制结果变量的巨大差异。注意它是如何不遵循平滑模式的。相反,它会上下波动。

如果我们思考为什么会发生这种情况,请记住我们的供体池中有 38 个州。因此,我们的线性回归有 38 个参数可供使用,以使预处理池与处理尽可能接近。在这种情况下,即使 T 很大,N 也很大,这给我们的线性回归模型提供了太多的灵活性。如果您熟悉正则化模型,可以使用 Ridge 或 Lasso 回归来解决此问题。在这里,我们将研究另一种更传统的避免过拟合的方法。

这篇关于【因果推断python】32_合成控制2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058523

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地