ROS 自动驾驶多点巡航

2024-06-13 21:28
文章标签 自动 驾驶 ros 多点 巡航

本文主要是介绍ROS 自动驾驶多点巡航,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ROS 自动驾驶多点巡航:

1、首先创建工作空间:

基于我们的artca_ws;

2、创建功能包:

进入src目录,输入命令:

catkin_create_pkg point_pkg std_msgs rospy roscpp

test_pkg 为功能包名,后面两个是依赖;
在这里插入图片描述

3、创建python文件

我们通过vscode打开src下功能包:
创建 point.py:
在这里插入图片描述
代码内容写入 :

#!/usr/bin/env python  
import rospy  
import actionlib  
import collections
from actionlib_msgs.msg import *  
from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist  
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal  
from random import sample  
from math import pow, sqrt  class MultiNav():  def __init__(self):  rospy.init_node('MultiNav', anonymous=True)  rospy.on_shutdown(self.shutdown)  # How long in seconds should the robot pause at each location?  self.rest_time = rospy.get_param("~rest_time", 10)  # Are we running in the fake simulator?  self.fake_test = rospy.get_param("~fake_test", False)  # Goal state return values  goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED','SUCCEEDED',  'ABORTED', 'REJECTED','PREEMPTING', 'RECALLING',   'RECALLED','LOST']  # Set up the goal locations. Poses are defined in the map frame.  # An easy way to find the pose coordinates is to point-and-click  # Nav Goals in RViz when running in the simulator.  # Pose coordinates are then displayed in the terminal  # that was used to launch RViz.  locations = collections.OrderedDict()  locations['point-1'] = Pose(Point(5.21, -2.07, 0.00), Quaternion(0.000, 0.000, -0.69, 0.72)) locations['point-2'] = Pose(Point(3.50, -5.78, 0.00), Quaternion(0.000, 0.000, 0.99, 0.021))#locations['point-3'] = Pose(Point(-6.95, 2.26, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))#locations['point-4'] = Pose(Point(-6.50, 2.04, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))# Publisher to manually control the robot (e.g. to stop it)  self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)  # Subscribe to the move_base action server  self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)  rospy.loginfo("Waiting for move_base action server...")  # Wait 60 seconds for the action server to become available  self.move_base.wait_for_server(rospy.Duration(10))  rospy.loginfo("Connected to move base server")  # A variable to hold the initial pose of the robot to be set by the user in RViz  initial_pose = PoseWithCovarianceStamped()  # Variables to keep track of success rate, running time, and distance traveled  n_locations = len(locations)  n_goals = 0  n_successes = 0  i = 0  distance_traveled = 0  start_time = rospy.Time.now()  running_time = 0  location = ""  last_location = ""  # Get the initial pose from the user  rospy.loginfo("Click on the map in RViz to set the intial pose...")  rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)  self.last_location = Pose()  rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose) keyinput = int(input("Input 0 to continue,or reget the initialpose!\n"))while keyinput != 0:rospy.loginfo("Click on the map in RViz to set the intial pose...")  rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)  rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose) rospy.loginfo("Press y to continue,or reget the initialpose!")keyinput = int(input("Input 0 to continue,or reget the initialpose!"))# Make sure we have the initial pose  while initial_pose.header.stamp == "":  rospy.sleep(1)  rospy.loginfo("Starting navigation test")  # Begin the main loop and run through a sequence of locations  for location in locations.keys():  rospy.loginfo("Updating current pose.")  distance = sqrt(pow(locations[location].position.x  - initial_pose.pose.pose.position.x, 2) +  pow(locations[location].position.y -  initial_pose.pose.pose.position.y, 2))  initial_pose.header.stamp = ""  # Store the last location for distance calculations  last_location = location  # Increment the counters  i += 1  n_goals += 1  # Set up the next goal location  self.goal = MoveBaseGoal()  self.goal.target_pose.pose = locations[location]  self.goal.target_pose.header.frame_id = 'map'  self.goal.target_pose.header.stamp = rospy.Time.now()  # Let the user know where the robot is going next  rospy.loginfo("Going to: " + str(location))  # Start the robot toward the next location  self.move_base.send_goal(self.goal)  # Allow 5 minutes to get there  finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))  # Check for success or failure  if not finished_within_time:  self.move_base.cancel_goal()  rospy.loginfo("Timed out achieving goal")  else:  state = self.move_base.get_state()  if state == GoalStatus.SUCCEEDED:  rospy.loginfo("Goal succeeded!")  n_successes += 1  distance_traveled += distance  else:  rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))  # How long have we been running?  running_time = rospy.Time.now() - start_time  running_time = running_time.secs / 60.0  # Print a summary success/failure, distance traveled and time elapsed  rospy.loginfo("Success so far: " + str(n_successes) + "/" +  str(n_goals) + " = " + str(100 * n_successes/n_goals) + "%")  rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +  " min Distance: " + str(trunc(distance_traveled, 1)) + " m")  rospy.sleep(self.rest_time)  def update_initial_pose(self, initial_pose):  self.initial_pose = initial_pose  def shutdown(self):  rospy.loginfo("Stopping the robot...")  self.move_base.cancel_goal()  rospy.sleep(2)  self.cmd_vel_pub.publish(Twist())  rospy.sleep(1)  
def trunc(f, n):  # Truncates/pads a float f to n decimal places without rounding  slen = len('%.*f' % (n, f))  return float(str(f)[:slen])  if __name__ == '__main__':  try:  MultiNav()  rospy.spin()  except rospy.ROSInterruptException:  rospy.loginfo("AMCL navigation test finished.")  

4、编译:

nano@nano-desktop:~/artcar_ws/src$ cd ..
nano@nano-desktop:~/artcar_ws$ catkin build 

在这里插入图片描述

5、案例实操;

启动小车并进入到相应环境:

(1)打开终端,启动底盘环境,输入如下命令:

$ roslaunch artcar_nav artcar_bringup.launch

(2)启动导航程序:

$ roslaunch artcar_nav artcar_move_base.launch

(3)启动RVIZ:

(4)获取点位:

 rostopic echo /move_base_sile/goal 

获取点位

roscar@roscar-virtual-machine:~/artcar_simulation/src$ rostopic echo /move_base_simple/goal 
WARNING: no messages received and simulated time is active.
Is /clock being published?
header: seq: 0stamp: secs: 405nsecs: 141000000frame_id: "odom"
pose: position: x: 5.21420097351y: -2.07076597214z: 0.0orientation: x: 0.0y: 0.0z: -0.69109139328w: 0.722767380375
---
header: seq: 1stamp: secs: 422nsecs:  52000000frame_id: "odom"
pose: position: x: 3.50902605057y: -5.78046607971z: 0.0orientation: x: 0.0y: 0.0z: 0.999777096296w: 0.0211129752124
---

(5)修改point.py文件中点位数据的位置:

在这里插入图片描述

(6 ) 然后开启终端执行:

nano@nano-desktop:~/artcar_ws/src/point_pkg/src$ ./point.py 

在这里插入图片描述

此时确定位置是否准确,准确的话,在此终端中输入:0
小车开始多点运行。

这篇关于ROS 自动驾驶多点巡航的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058464

相关文章

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略