01背包遗传算法C++实现

2024-06-13 20:58

本文主要是介绍01背包遗传算法C++实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法详解: http://blog.csdn.net/u011630575/article/details/70317251

一、代码如下:

#include <windows.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>/*数据集一**********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              30			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集二***********************************************************************/ 
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              50			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集三***********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              60		//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
597,596,593,586,581,568,567,560,549,548,547,529,529,527,520,491,482,478,475,475,466,462,459,458,454,451,449,443,442,421,410,409,395,394,390,377,375,366,361,347,334,322,315,313,311,309,296,295,294,289,285,279,277,276,272,248,246,245,238,237,232,231,230,225,192,184,183,176,171,169,165,165,154,153,150,149,147,143,140,138,134,132,127,124,123,114,111,104,89,74,63,62,58,55,48,27,22,12,6,250};
int weight[]={
54,183,106,82,30,58,71,166,117,190,90,191,205,128,110,89,63,6,140,86,30,91,156,31,70,199,142,98,178,16,140,31,24,197,101,73,16,73,2,159,71,102,144,151,27,131,209,164,177,177,129,146,17,53,64,146,43,170,180,171,130,183,5,113,207,57,13,163,20,63,12,24,9,42,6,109,170,108,46,69,43,175,81,5,34,146,148,114,160,174,156,82,47,126,102,83,58,34,21,14};
/************************************************************************/struct individual				//个体结构体
{bool chromsome[N];		//染色体编码double fitness;				//适应度//即本问题中的个体所得价值double weight;			//总重量
};
int best=0;
int same=0;
individual X[S],Y[S],bestindividual;/************************************************************************/
int  comp(individual bestindividual,individual temp);	//比较函数
void checkalike(void);							//检查相似度函数
void GenerateInitialPopulation(void); 				//初始种群
void CalculateFitnessValue(void);					//适应度
void SelectionOperator(void);						//选择
void CrossoverOperator(void);					//交叉
void MutationOperator(void);					//变异
void FindBestandWorstIndividual(void);				//寻找最优解
void srand(unsigned int seed);					//随机生成
/************************************************************************/int comp(individual bestindividual,individual temp)//比较函数
{int fit=0,w=0;//第一种不变:操作后不满足重量函数,第二种:操作后适应度小于操作前for(int i=0;i<N;i++){fit+=temp.chromsome[i]*value[i];w+=temp.chromsome[i]*weight[i];}if(w>KW)return -1;return (bestindividual.fitness>fit?-1:1);//如果小于原来值或者不满足重量函数,则返回-1
}/************************************************************************/
void Checkalike(void)
{int i=0,j=0;for( i=0;i<S;i++)//相似度校验{for(j=0;j<N;j++){bool temp=X[i].chromsome[j];for(int k=1;k<S;k++){if(temp!=X[k].chromsome[j])break;}}if(j==N)same++;}if(same>N*ALIKE)//大于ALIKE作为判定为早熟{int minindex=0;for(int n=0;n<S;n++)if(X[n].fitness<X[minindex].fitness)minindex=n;//确定最小for (j=0; j<N;j++)//重新生成{bool m=(rand()%10<5)?0:1;X[minindex].chromsome[j]=m;X[minindex].weight+=m*weight[j];//个体的总重量X[minindex].fitness+=m*value[j]; //个体的总价值}}
}/************************************************************************/
void GenerateInitialPopulation(void)//初始种群,保证每个值都在符合条件的解
{int i=0,j=0; bool k;for(i=0;i<N;i++)stop+=value[i];//设置理论最优值for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){k=(rand()%10<5)?0:1;X[i].chromsome[j]=k;w+=k*weight[j];//个体的总重量v+=k*value[j]; //个体的总价值}if(w>KW) i--;	   //如果不是解,重新生成else{X[i].fitness=v;X[i].weight=w;if(v==stop){ bestindividual=X[i];return;}//这种情况一般不会发生}}
}
/************************************************************************/void CalculateFitnessValue()
{int i=0,j=0;   	for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){w+=X[i].chromsome[j]*weight[j];//个体的总重量v+=X[i].chromsome[j]*value[j]; //个体的总价值}X[i].fitness=v;X[i].weight=w;if(v==stop){bestindividual=X[i];return;}//符合条件情况下最优解这种情况一般不会发生if(w>KW) X[i]=bestindividual;//如果不是解,找最好的一个解代之}
}
/************************************************************************/void SelectionOperator(void)
{int i, index;double p, sum=0.0;double cfitness[S];//选择、累积概率individual newX[S];for (i=0;i<S;i++) sum+=X[i].fitness;//适应度求和for (i=0;i<S; i++) cfitness[i]=X[i].fitness/sum; //选择概率for (i=1;i<S; i++) cfitness[i]=cfitness[i-1]+cfitness[i];//累积概率for (i=0;i<S;i++){p=(rand()%1001)/1000.0;//产生一个[0,1]之间的随机数index=0;while(p>cfitness[index])//轮盘赌进行选择{index++;}newX[i]=X[index];}for (i=0; i<S; i++) X[i]=newX[i];//新的种群
}/************************************************************************/
void CrossoverOperator(void)//交叉操作
{int i=0, j=0,k=0;individual temp;	for(i=0; i<S; i++){int p=0,q=0;do{p=rand()%S;//产生两个[0,S]的随机数q=rand()%S;}while(p==q);int w=1+rand()%N;//[1,N]表示交换的位数double r=(rand()%1001)/1000.0;//[0,1]if(r<=Pc){for(j=0;j<w;j++){temp.chromsome[j]=X[p].chromsome[j];//将要交换的位先放入临时空间X[p].chromsome[j]=X[q].chromsome[j];X[q].chromsome[j]=temp.chromsome[j];}}if(p==best)if(-1==comp(bestindividual,X[p]))//如果变异后适应度变小X[p]=bestindividual;if(q==best)if(-1==comp(bestindividual,X[q]))//如果变异后适应度变小X[q]=bestindividual;}
}
/************************************************************************/void MutationOperator(void)
{int i=0, j=0,k=0,q=0;double p=0;for (i=0; i<S; i++) {for (j=0; j<N; j++) {p=(rand()%1001)/1000.0;if (p<Pm)//对每一位都要考虑{  if(X[i].chromsome[j]==1)X[i].chromsome[j]=0;else	X[i].chromsome[j]=1;}}if(i==best)if(-1==comp(bestindividual,X[i]))//如果变异后适应度变小X[i]=bestindividual;}
}
/************************************************************************/void FindBestandWorstIndividual(void)
{int i;bestindividual=X[0];for (i=1;i<S; i++){if (X[i].fitness>bestindividual.fitness){bestindividual=X[i];best=i;}}
}/*主函数*****************************************************************/
int main()
{ DWORD start, stop;start = GetTickCount();//程序开始时间 srand((unsigned)time(0));t=0;GenerateInitialPopulation(); //初始群体包括产生个体和计算个体的初始值while (t<=T) {	FindBestandWorstIndividual();	//保存当前最优解SelectionOperator();			//选择	  	CrossoverOperator();			//交叉	  MutationOperator();			   //变异Checkalike();				  //检查相似度CalculateFitnessValue();	 //计算新种群适应度t++;}	FindBestandWorstIndividual();			//找到最优解printf(" 物品价值:");for(int k=0;k<N;k++){printf(" %d ",value[k]);}printf("\n");printf(" 物品重量:");for(int k=0;k<N;k++){ printf(" %d  ",weight[k]);}printf("\n");printf("背包容量 %d\n",1000);   	//输出最优值printf("-----------------------------\n"); printf("最优值 %f\n",bestindividual.fitness);   	//输出最优值printf("对应重量 %f\n",bestindividual.weight);       //对应重量printf("线性解:");for(int k=0;k<N;k++){if(bestindividual.chromsome[k]==1){  //输出最优解printf(" %d ",1);}else{printf(" %d ",0);}}printf("\n");printf("\n");stop = GetTickCount();//程序结束时间 printf("运行时间: %lld ms\n", stop - start);system("pause");return 0;
} 
/*结束***********************************************************************/

二 、结果分析

     蓝色字表示   输出结果

     运行时间表示 算法复杂度

 1)数据集一:物体总个数30时

 物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30

背包容量 1000

-----------------------------

最优值 2984.000000

对应重量 995.000000

线性解: 1  1  0  1  1  1  0  1  1  1  1  1  1  1  0  1  1  0  1  1  1  1  0  1  1  0  0  1  1  0

运行时间: 16 ms

 

 2)数据集二:物体总个数50时

物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77  75  73  72  70  69  66  65  63  60  58  56  50  30  20  15  10  8  5  3  1

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30   45   30   60   50   20   65   20   25   30   10   20   25   15   10   10   10   4   4   2   1

背包容量 1000

-----------------------------

最优值 3010.000000

对应重量 993.000000

线性解: 1  0  0  1  1  1  0  1  0  1  1  1  1  1  0  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  0  0  0  0  1  0  1  0  0  1  0  0  0  0  0  0  1  1  1  0

 

运行时间: 31 ms

 

 3)数据集三:物体总个数60时

物品价值: 597  596  593  586  581  568  567  560  549  548  547  529  529  527  520  491  482  478  475  475  466  462  459  458  454  451  449  443  442  421  410  409  395  394  390  377  375  366  361  347  334  322  315  313  311  309  296  295  294  289  285  279  277  276  272  248  246  245  238  237

 物品重量: 54   183   106   82   30   58   71   166   117   190   90   191   205   128   110   89   63   6   140   86   30   91   156   31   70   199   142   98   178   16   140   31   24   197   101   73   16   73   2   159   71   102   144   151   27   131   209   164   177   177   129   146   17   53   64   146   43   170   180   171

背包容量 1000

-----------------------------

最优值 9738.000000

对应重量 997.000000

线性解: 1  0  0  1  1  1  1  0  0  0  1  0  0  0  0  1  1  1  0  0  1  0  0  1  1  0  0  0  0  1  0  1  1  0  0  0  1  1  1  0  0  0  0  0  1  0  0  0  0  0  0  0  1  1  1  0  0  0  0  0

运行时间: 19297 ms






这篇关于01背包遗传算法C++实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058405

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1