01背包遗传算法C++实现

2024-06-13 20:58

本文主要是介绍01背包遗传算法C++实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法详解: http://blog.csdn.net/u011630575/article/details/70317251

一、代码如下:

#include <windows.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>/*数据集一**********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              30			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集二***********************************************************************/ 
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              50			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集三***********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              60		//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
597,596,593,586,581,568,567,560,549,548,547,529,529,527,520,491,482,478,475,475,466,462,459,458,454,451,449,443,442,421,410,409,395,394,390,377,375,366,361,347,334,322,315,313,311,309,296,295,294,289,285,279,277,276,272,248,246,245,238,237,232,231,230,225,192,184,183,176,171,169,165,165,154,153,150,149,147,143,140,138,134,132,127,124,123,114,111,104,89,74,63,62,58,55,48,27,22,12,6,250};
int weight[]={
54,183,106,82,30,58,71,166,117,190,90,191,205,128,110,89,63,6,140,86,30,91,156,31,70,199,142,98,178,16,140,31,24,197,101,73,16,73,2,159,71,102,144,151,27,131,209,164,177,177,129,146,17,53,64,146,43,170,180,171,130,183,5,113,207,57,13,163,20,63,12,24,9,42,6,109,170,108,46,69,43,175,81,5,34,146,148,114,160,174,156,82,47,126,102,83,58,34,21,14};
/************************************************************************/struct individual				//个体结构体
{bool chromsome[N];		//染色体编码double fitness;				//适应度//即本问题中的个体所得价值double weight;			//总重量
};
int best=0;
int same=0;
individual X[S],Y[S],bestindividual;/************************************************************************/
int  comp(individual bestindividual,individual temp);	//比较函数
void checkalike(void);							//检查相似度函数
void GenerateInitialPopulation(void); 				//初始种群
void CalculateFitnessValue(void);					//适应度
void SelectionOperator(void);						//选择
void CrossoverOperator(void);					//交叉
void MutationOperator(void);					//变异
void FindBestandWorstIndividual(void);				//寻找最优解
void srand(unsigned int seed);					//随机生成
/************************************************************************/int comp(individual bestindividual,individual temp)//比较函数
{int fit=0,w=0;//第一种不变:操作后不满足重量函数,第二种:操作后适应度小于操作前for(int i=0;i<N;i++){fit+=temp.chromsome[i]*value[i];w+=temp.chromsome[i]*weight[i];}if(w>KW)return -1;return (bestindividual.fitness>fit?-1:1);//如果小于原来值或者不满足重量函数,则返回-1
}/************************************************************************/
void Checkalike(void)
{int i=0,j=0;for( i=0;i<S;i++)//相似度校验{for(j=0;j<N;j++){bool temp=X[i].chromsome[j];for(int k=1;k<S;k++){if(temp!=X[k].chromsome[j])break;}}if(j==N)same++;}if(same>N*ALIKE)//大于ALIKE作为判定为早熟{int minindex=0;for(int n=0;n<S;n++)if(X[n].fitness<X[minindex].fitness)minindex=n;//确定最小for (j=0; j<N;j++)//重新生成{bool m=(rand()%10<5)?0:1;X[minindex].chromsome[j]=m;X[minindex].weight+=m*weight[j];//个体的总重量X[minindex].fitness+=m*value[j]; //个体的总价值}}
}/************************************************************************/
void GenerateInitialPopulation(void)//初始种群,保证每个值都在符合条件的解
{int i=0,j=0; bool k;for(i=0;i<N;i++)stop+=value[i];//设置理论最优值for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){k=(rand()%10<5)?0:1;X[i].chromsome[j]=k;w+=k*weight[j];//个体的总重量v+=k*value[j]; //个体的总价值}if(w>KW) i--;	   //如果不是解,重新生成else{X[i].fitness=v;X[i].weight=w;if(v==stop){ bestindividual=X[i];return;}//这种情况一般不会发生}}
}
/************************************************************************/void CalculateFitnessValue()
{int i=0,j=0;   	for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){w+=X[i].chromsome[j]*weight[j];//个体的总重量v+=X[i].chromsome[j]*value[j]; //个体的总价值}X[i].fitness=v;X[i].weight=w;if(v==stop){bestindividual=X[i];return;}//符合条件情况下最优解这种情况一般不会发生if(w>KW) X[i]=bestindividual;//如果不是解,找最好的一个解代之}
}
/************************************************************************/void SelectionOperator(void)
{int i, index;double p, sum=0.0;double cfitness[S];//选择、累积概率individual newX[S];for (i=0;i<S;i++) sum+=X[i].fitness;//适应度求和for (i=0;i<S; i++) cfitness[i]=X[i].fitness/sum; //选择概率for (i=1;i<S; i++) cfitness[i]=cfitness[i-1]+cfitness[i];//累积概率for (i=0;i<S;i++){p=(rand()%1001)/1000.0;//产生一个[0,1]之间的随机数index=0;while(p>cfitness[index])//轮盘赌进行选择{index++;}newX[i]=X[index];}for (i=0; i<S; i++) X[i]=newX[i];//新的种群
}/************************************************************************/
void CrossoverOperator(void)//交叉操作
{int i=0, j=0,k=0;individual temp;	for(i=0; i<S; i++){int p=0,q=0;do{p=rand()%S;//产生两个[0,S]的随机数q=rand()%S;}while(p==q);int w=1+rand()%N;//[1,N]表示交换的位数double r=(rand()%1001)/1000.0;//[0,1]if(r<=Pc){for(j=0;j<w;j++){temp.chromsome[j]=X[p].chromsome[j];//将要交换的位先放入临时空间X[p].chromsome[j]=X[q].chromsome[j];X[q].chromsome[j]=temp.chromsome[j];}}if(p==best)if(-1==comp(bestindividual,X[p]))//如果变异后适应度变小X[p]=bestindividual;if(q==best)if(-1==comp(bestindividual,X[q]))//如果变异后适应度变小X[q]=bestindividual;}
}
/************************************************************************/void MutationOperator(void)
{int i=0, j=0,k=0,q=0;double p=0;for (i=0; i<S; i++) {for (j=0; j<N; j++) {p=(rand()%1001)/1000.0;if (p<Pm)//对每一位都要考虑{  if(X[i].chromsome[j]==1)X[i].chromsome[j]=0;else	X[i].chromsome[j]=1;}}if(i==best)if(-1==comp(bestindividual,X[i]))//如果变异后适应度变小X[i]=bestindividual;}
}
/************************************************************************/void FindBestandWorstIndividual(void)
{int i;bestindividual=X[0];for (i=1;i<S; i++){if (X[i].fitness>bestindividual.fitness){bestindividual=X[i];best=i;}}
}/*主函数*****************************************************************/
int main()
{ DWORD start, stop;start = GetTickCount();//程序开始时间 srand((unsigned)time(0));t=0;GenerateInitialPopulation(); //初始群体包括产生个体和计算个体的初始值while (t<=T) {	FindBestandWorstIndividual();	//保存当前最优解SelectionOperator();			//选择	  	CrossoverOperator();			//交叉	  MutationOperator();			   //变异Checkalike();				  //检查相似度CalculateFitnessValue();	 //计算新种群适应度t++;}	FindBestandWorstIndividual();			//找到最优解printf(" 物品价值:");for(int k=0;k<N;k++){printf(" %d ",value[k]);}printf("\n");printf(" 物品重量:");for(int k=0;k<N;k++){ printf(" %d  ",weight[k]);}printf("\n");printf("背包容量 %d\n",1000);   	//输出最优值printf("-----------------------------\n"); printf("最优值 %f\n",bestindividual.fitness);   	//输出最优值printf("对应重量 %f\n",bestindividual.weight);       //对应重量printf("线性解:");for(int k=0;k<N;k++){if(bestindividual.chromsome[k]==1){  //输出最优解printf(" %d ",1);}else{printf(" %d ",0);}}printf("\n");printf("\n");stop = GetTickCount();//程序结束时间 printf("运行时间: %lld ms\n", stop - start);system("pause");return 0;
} 
/*结束***********************************************************************/

二 、结果分析

     蓝色字表示   输出结果

     运行时间表示 算法复杂度

 1)数据集一:物体总个数30时

 物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30

背包容量 1000

-----------------------------

最优值 2984.000000

对应重量 995.000000

线性解: 1  1  0  1  1  1  0  1  1  1  1  1  1  1  0  1  1  0  1  1  1  1  0  1  1  0  0  1  1  0

运行时间: 16 ms

 

 2)数据集二:物体总个数50时

物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77  75  73  72  70  69  66  65  63  60  58  56  50  30  20  15  10  8  5  3  1

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30   45   30   60   50   20   65   20   25   30   10   20   25   15   10   10   10   4   4   2   1

背包容量 1000

-----------------------------

最优值 3010.000000

对应重量 993.000000

线性解: 1  0  0  1  1  1  0  1  0  1  1  1  1  1  0  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  0  0  0  0  1  0  1  0  0  1  0  0  0  0  0  0  1  1  1  0

 

运行时间: 31 ms

 

 3)数据集三:物体总个数60时

物品价值: 597  596  593  586  581  568  567  560  549  548  547  529  529  527  520  491  482  478  475  475  466  462  459  458  454  451  449  443  442  421  410  409  395  394  390  377  375  366  361  347  334  322  315  313  311  309  296  295  294  289  285  279  277  276  272  248  246  245  238  237

 物品重量: 54   183   106   82   30   58   71   166   117   190   90   191   205   128   110   89   63   6   140   86   30   91   156   31   70   199   142   98   178   16   140   31   24   197   101   73   16   73   2   159   71   102   144   151   27   131   209   164   177   177   129   146   17   53   64   146   43   170   180   171

背包容量 1000

-----------------------------

最优值 9738.000000

对应重量 997.000000

线性解: 1  0  0  1  1  1  1  0  0  0  1  0  0  0  0  1  1  1  0  0  1  0  0  1  1  0  0  0  0  1  0  1  1  0  0  0  1  1  1  0  0  0  0  0  1  0  0  0  0  0  0  0  1  1  1  0  0  0  0  0

运行时间: 19297 ms






这篇关于01背包遗传算法C++实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058405

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、