nlp---Nltk 常用方法

2024-06-13 20:32
文章标签 方法 常用 nlp nltk

本文主要是介绍nlp---Nltk 常用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在nltk的介绍文章中,前面几篇主要介绍了nltk自带的数据(书籍和语料),感觉系统学习意义不大,用到哪里看到那里就行(笑),所以这里会从一些常用功能开始,适当略过对于数据本体的介绍。

文本处理

词频提取

把切分好的词表进行词频排序(按照出现次数排序),

1
2
3
all_words  =  nltk.FreqDist(w.lower()  for  in  nltk.word_tokenize( "I'm foolish foolish man" ))
print (all_words.keys())
all_words.plot()

dict_keys(["'m", 'man', 'i', 'foolish'])

只考虑最高频率的两个词,并且绘制累积图,

1
all_words.plot( 2 , cumulative = True )

英文词干提取器

1
2
3
import  nltk
porter  =  nltk.PorterStemmer()
porter.stem( 'lying' )

'lie'

英文分词

1
2
text  =  nltk.word_tokenize( "And now for something completely different" )
print (text)

['And', 'now', 'for', 'something', 'completely', 'different']

分词&词形还原&词根还原使用概览

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import  nltk
sent  =  "I'm super lying man"
'''
分词
'''
print (nltk.word_tokenize(sent))
print (nltk.tokenize.word_tokenize(sent))
'''
词根还原
'''
porter  =  nltk.PorterStemmer()
print ([porter.stem(x)  for  in  nltk.word_tokenize(sent)])
'''
词形还原(lemmatizer),即把一个任何形式的英语单词还原到一般形式,与词根还原不同(stemmer),
后者是抽取一个单词的词根。
'''
porter2  =  nltk.stem.WordNetLemmatizer()
print ([porter2.lemmatize(x)  for  in  nltk.word_tokenize(sent)])

『TensorFlow』测试项目_对评论分类

词性标注

1
2
3
print (nltk.pos_tag(text))
print (nltk.pos_tag([ 'i' , 'love' , 'you' ]))
print ( nltk.pos_tag([ 'love' , 'and' , 'hate' ]))

[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different', 'JJ')]
[('i', 'NN'), ('love', 'VBP'), ('you', 'PRP')]
[('love', 'NN'), ('and', 'CC'), ('hate', 'NN')]

厉害的地方在这里:第二局里面的love是动词,第三句里面的love是名词。

  • 词性标注语料制作

1
2
tagged_token  =  nltk.tag.str2tuple( 'fly/NN' )
print (tagged_token)

('fly', 'NN')

中文的也行,

1
2
sent  =  '我/NN 是/IN 一个/AT 大/JJ 傻×/NN'
[nltk.tag.str2tuple(t)  for  in  sent.split()]  # 中文语料词性标注(&分词)

[('我', 'NN'), ('是', 'IN'), ('一个', 'AT'), ('大', 'JJ'), ('傻×', 'NN')]

  • 词性标注器

默认标注器:

不管什么词,都标注为频率最高的一种词性。比如经过分析,所有中文语料里的词是名次的概率是13%最大,那么我们的默认标注器就全部标注为名次。这种标注器一般作为其他标注器处理之后的最后一道门,即:不知道是什么词?那么他是名词。

1
2
3
4
5
6
7
8
9
raw  =  '我 累 嗯个 e去?'
tokens  =  nltk.word_tokenize(raw)
default_tagger  =  nltk.DefaultTagger( 'NN' )
tags  =  default_tagger.tag(tokens)
print (tokens)
print (tags)

['我', '累', '嗯个', 'e去', '?']

[('我', 'NN'), ('累', 'NN'), ('嗯个', 'NN'), ('e去', 'NN'), ('?', 'NN')]

正则表达式标注器:

满足特定正则表达式的认为是某种词性,比如凡是带“们”的都认为是代词(PRO)。

1
2
3
4
5
pattern  =  [( '.*们$' , 'PRO' )]
tagger  =  nltk.RegexpTagger(pattern)
print (tagger.tag(nltk.word_tokenize( '我们 累 个 去 你们 和 他们 啊' )))

[('我们', 'PRO'), ('累', None), ('个', None), ('去', None), ('你们', 'PRO'), ('和', None), ('他们', 'PRO'), ('啊', None)]

查询标注器:

找出最频繁的n个词以及它的词性,然后用这个信息去查找语料库,匹配的就标记上,剩余的词使用默认标注器(回退)。这一般使用一元标注的方式,见下面。

一元标注:基于已经标注的语料库做训练,然后用训练好的模型来标注新的语料。

1
2
3
4
5
6
7
sents  =  [[u '我' , u '你' , u '小兔' ]]
tagged_sents  =  [[(u '我' , u 'PRO' ), (u '小兔' , u 'NN' )]]
unigram_tagger  =  nltk.UnigramTagger(tagged_sents)
tags  =  unigram_tagger.tag(sents[ 0 ])
print (tags)

[('我', 'PRO'), ('你', None), ('小兔', 'NN')]

二元标注和多元标注:一元标注指的是只考虑当前这个词,不考虑上下文,二元标注器指的是考虑它前面的词的标注,用法只需要把上面的UnigramTagger换成BigramTagger,同理三元标注换成TrigramTagger(并未有示例)。

组合标注器:

为了提高精度和覆盖率,我们对多种标注器组合,比如组合二元标注器、一元标注器和默认标注器,如下,

1
2
3
t0  =  nltk.DefaultTagger( 'NN' )
t1  =  nltk.UnigramTagger(train_sents, backoff = t0) 
t2  =  nltk.BigramTagger(train_sents, backoff = t1)

直接调用t2即可。

持久化&较为完整的训练一个标注器:
1
2
3
4
5
6
7
8
9
10
11
sent  =  '我/NN 是/IN 一个/AT 好的/JJ 人/NN'
train_sents  =  [[nltk.tag.str2tuple(t)  for  in  sent.split()]]
t0  =  nltk.DefaultTagger( 'NN' )
t1  =  nltk.UnigramTagger(train_sents, backoff = t0) 
t2  =  nltk.BigramTagger(train_sents, backoff = t1) 
from  pickle  import  dump
output  =  open ( 't2.pkl' 'wb' )
dump(t2, output,  - 1 )
output.close()  

加载在这里,

1
2
3
4
from  pickle  import  load 
input  =  open ( 't2.pkl' 'rb'
tagger  =  load( input
input .close()

  

这篇关于nlp---Nltk 常用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058349

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen