pytorch中,load_state_dict和torch.load的区别?

2024-06-13 20:20

本文主要是介绍pytorch中,load_state_dict和torch.load的区别?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 PyTorch 中,load_state_dicttorch.load 是两个不同的函数,用于不同的目的。

  1. torch.load:

    • 用途: 从磁盘加载一个保存的对象。这个对象可以是一个模型的整个状态字典(包含模型参数)、优化器状态字典、甚至是任意其他 Python 对象。
    • 用法: 通常用于加载之前用 torch.save 保存的对象。
    • 示例:
      # 保存对象
      torch.save(model.state_dict(), 'model.pth')
      torch.save(optimizer.state_dict(), 'optimizer.pth')# 加载对象
      model_state_dict = torch.load('model.pth')
      optimizer_state_dict = torch.load('optimizer.pth')
      
  2. load_state_dict:

    • 用途: 将加载的状态字典(通常是模型参数)应用到一个模型实例上。这个函数通常用于将 torch.load 加载的状态字典应用到模型或优化器上。
    • 用法: 在模型或优化器实例上调用,用于将加载的状态字典设置为模型或优化器的当前状态。
    • 示例:
      # 创建模型实例
      model = MyModel()# 加载并应用状态字典
      model.load_state_dict(torch.load('model.pth'))
      

总结

  • torch.load 用于从磁盘加载任意对象(通常是状态字典)。
  • load_state_dict 用于将加载的状态字典应用到模型或优化器实例上。

以下是一个完整的示例代码,演示如何保存和加载模型参数:

import torch
import torch.nn as nn
import torch.optim as optim# 定义模型
class MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc = nn.Linear(10, 1)def forward(self, x):return self.fc(x)# 创建模型和优化器
model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.001)# 保存模型和优化器的状态字典
torch.save(model.state_dict(), 'model.pth')
torch.save(optimizer.state_dict(), 'optimizer.pth')# 加载模型和优化器的状态字典
model.load_state_dict(torch.load('model.pth'))
optimizer.load_state_dict(torch.load('optimizer.pth'))

这段代码展示了如何定义一个简单的模型,保存它的状态字典,然后加载这些状态字典到新的模型和优化器实例中。

这篇关于pytorch中,load_state_dict和torch.load的区别?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058325

相关文章

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

python中getsizeof和asizeof的区别小结

《python中getsizeof和asizeof的区别小结》本文详细的介绍了getsizeof和asizeof的区别,这两个函数都用于获取对象的内存占用大小,它们来自不同的库,下面就来详细的介绍一下... 目录sys.getsizeof (python 内置)pympler.asizeof.asizeof

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域