opencv在android预览上实现灰化/感应触屏/边缘检测(3)

2024-06-13 20:08

本文主要是介绍opencv在android预览上实现灰化/感应触屏/边缘检测(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

  在前一篇中,我们已经讲解了opencv在Android实现预览,现在继续在这预览上面实现些其他功能。

预览黑白化

步骤分析

  首先需要知道我们使用的像素格式为:Bgra32。Bgra32:Bgra32像素格式是一种32BPP的sRGB格式。每个颜色通道(蓝色blue, 绿色green, 红色red)各占8BPP(位/像素),与Bgr24不同的是,它还有用于表现不透明度的alpha通道(8BPP)。然后需要知道:从 RGB 到 YUV 空间的 Y 转换公式为:Y = 0.299R+0.587G+0.114B。接着要转化为灰度图像:首先知道某个点的R、G、B值,然后用Y=0.299*R+0.587*G+0.114*B,计算出该点的亮度信息,然后需要知道灰度图中,其红(R)、
绿(G)、蓝(B)三个分量的值相等。所以,我们要将预览黑白化,准确的说是灰化的做法:(1)取到预览界面中每个点的RGB数据信息。(2)利用公式 Y = 0.299R+0.587G+0.114B,算出该点的亮度。(3)将该点的R、G、B通道数据都设置为这个亮度。

代码实现

  它的代码实现,我是使用jni完成的,之前测试过直接用java计算,效率和速度。。。哭了。。。
代码如下:
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {// TODO Auto-generated method stubint width,height;mRgba = inputFrame.rgba();width = mRgba.width();height = mRgba.height();PreviceGray.grayProc(mRgba.getNativeObjAddr());return mRgba;
}
  预览的每帧画面都会调用函数onCameraFrame,并且预览的数据就是mRgba,所以我们要灰化预览,可以直接修改mRgba数据来实现。
对mRgba中数据的修改,放在了PreviceGray.grayProc中来实现的。
jni中代码实现如下:
NIEXPORT void Java_com_example_camera_1opencv_1android_PreviceGray_grayProc(JNIEnv* env, jclass obj, jlong imageGray){  int i;int width,height;Mat mat = Mat(*((Mat*)imageGray));width = mat.rows;height = mat.cols;uchar* ptr = mat.ptr(0);  for(int i = 0; i < width*height; i++){  //计算公式:Y(亮度) = 0.299*R + 0.587*G + 0.114*B  //对于一个int四字节,其彩色值存储方式为:BGRA  int grayScale = (int)(ptr[4*i+2]*0.299 + ptr[4*i+1]*0.587 + ptr[4*i+0]*0.114);  ptr[4*i+1] = grayScale;  ptr[4*i+2] = grayScale;  ptr[4*i+0] = grayScale;  }
}

   也就是按照之前步骤操作:所有点的RGB数据都是在传入函数的imageGray可以找到,然后利用公式计算出亮度,最后用这个亮度值亮度值替换该点的RGB数据。
运行效果图如下:


参考代码如下:http://download.csdn.net/detail/u011630458/8403611

预览触屏

介绍

   这个主要功能是,在预览时候,当点击预览界面,就以点击点为圆心,画一个红色的圆圈。

实现过程

   首先取到点击的坐标,然后和之前灰化操作一样,将预览的数据传入jni中,同时传入的还有触屏点的坐标,之后在jni中,使用cvCircle在传入的那帧数据上画一个
圆,接着将操作后数据返回,预览显示出来。
实现代码如下:
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {// TODO Auto-generated method stubmRgba = inputFrame.rgba();PreviceGray.grayProc(mRgba.getNativeObjAddr(),touch_x, touch_y);
//		Log.e("yulinghan","yulinghan onCameraFrame touch_x="+touch_x);	return mRgba;}
@Override
public boolean onTouch(View arg0, MotionEvent arg1) {// TODO Auto-generated method stubtouch_x = (int)arg1.getX();touch_y = (int)arg1.getY();Log.e("yulinghan","yulinghan onTouch touch_x="+touch_x);return false;
}
   预览时候,点击触屏就会触发onTouch操作,更新坐标值:touch_x,touch_y。接着在onCameraFrame中,将预览数据和坐标一起传入jni中
jin中处理如下:
JNIEXPORT void Java_com_example_camera_1opencv_1android_PreviceGray_grayProc(JNIEnv* env, jclass obj, jlong imageGray,jint touch_x,jint touch_y){int width,height;Mat mat = Mat(*((Mat*)imageGray));width = mat.rows;height = mat.cols;uchar* ptr = mat.ptr(0);IplImage cvmat = mat;__android_log_print(ANDROID_LOG_ERROR, "JNITag","width=%d,height=%d,touch_x=%d,touch_y=%d", width,height,touch_x,touch_y); cvCircle(&cvmat,cvPoint(touch_x,touch_y),100,cvScalar(255,0,0,255),10,8,0);
}
   只是简单的以传入的touch_x、touch_x为圆心,使用函数cvCircle在传入的预览数据中画了一个红色的圆。
运行效果如下:


预览边缘检测

   检测边缘的方法有很多,如在《数字图像处理》书中介绍了微分算子、Canny算子、LOG滤波等方法。而在本文中使用腐蚀与膨胀相关的形态学梯度来完成。
膨胀就是求局部最大值的操作,腐蚀就是求局部最小值的操作。而形态学梯度为膨胀图与腐蚀图之差。可以在opencv中使用morphologyEx函数来直接实现。
具体核心代码如下:
JNIEXPORT void Java_com_example_camera_1opencv_1android_PreviceGray_grayProc(JNIEnv* env, jclass obj, jlong imageGray){  int i;int width,height;Mat mat = Mat(*((Mat*)imageGray));width = mat.rows;height = mat.cols;uchar* ptr = mat.ptr(0);  uchar* ptr_tmp;  MorphoFeatures morpho;cv::Mat edges;for(int i = 0; i < width*height; i++){  //计算公式:Y(亮度) = 0.299*R + 0.587*G + 0.114*B  //对于一个int四字节,其彩色值存储方式为:BGRA  int grayScale = (int)(ptr[4*i+2]*0.299 + ptr[4*i+1]*0.587 + ptr[4*i+0]*0.114);  ptr[4*i+1] = grayScale;  ptr[4*i+2] = grayScale;  ptr[4*i+0] = grayScale;  }edges = morpho.getEdges(mat);ptr_tmp = edges.ptr(0);for(int i = 0; i < width*height; i++){  ptr[4*i+0] = ptr_tmp[4*i+0];  ptr[4*i+1] = ptr_tmp[4*i+1];  ptr[4*i+2] = ptr_tmp[4*i+2];}}
   代码中,首先将传入的预览数据灰阶化,然后用morphologyEx来做边缘检测,最后返回检测之后的数据。
演示效果如下:


参考代码如下:http://download.csdn.net/detail/u011630458/8403629

这篇关于opencv在android预览上实现灰化/感应触屏/边缘检测(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058298

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too