代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离

本文主要是介绍代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.判断子序列

代码随想录

代码:

class Solution {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1,vector<int>(t.size() + 1,0));// 判断s和t的公共最长子序列的长度是否和s的长度相等// dp[i][j]表示下标为0~i-1的s的子数组和下标为0~j-1的子数组的最长公共子序列的长度for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}if(dp[s.size()][t.size()] == s.size()){return true;}else{return false;}}
};

 思路:

        这题就是判断两个字符串的最长公共子序列是不是s。其实套路都一样。下面的都是copy昨天的。

        dp数组的含义:dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。注意到了吗,只是求这两个字符串的最长公共子序列,没有要求一定要以什么东西结尾。所以最后一个元素就是dp数组中最大的那个元素。

        dp数组的初始化:dp[0][j]和dp[i][0]都没有实际意义,而且为了能够推出符合实际意义的dp[1][1]应该把这些元素初始化为0

        dp数组的递推公式:如果此时的i-1和j-1下标对应的元素都相等,那就可以在dp[i - 1][j - 1]的基础上加一了。如果不相等,就说明这两元素有互斥的关系,两个元素不可能同时被选到最长公共子序列中。所以我们可以分两种情况:dp[i - 1][j]或dp[i][j - 1],取两个的最大值。

        dp数组的遍历顺序:正序遍历。

2.不同的子序列

代码随想录 (programmercarl.com)

代码:

class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1,vector<uint64_t>(t.size() + 1,0));// dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 根据定义进行初始化// dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 很明显没有for(int i = 0; i <= s.size(); i++){// dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法// 很明显是一种,就是删除所有元素 dp[0][0]也满足dp[i][0] = 1;}for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];// 注意这里dp数组的含义是方法数!!!// 一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。// 一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。}else{dp[i][j] = dp[i - 1][j];}}}return dp[s.size()][t.size()];}
};

 思路:

        dp数组的含义: dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法

        dp数组的初始化:dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法,很明显没有;dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法很明显是一种,就是删除所有元素。(dp[0][0]也满足)

        dp数组的递推公式:注意这里dp数组的含义是方法数!!!
                    一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
                    一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

        dp数组的遍历顺序:正序遍历

uint64_t 是 C/C++ 语言中的整数数据类型,它表示无符号的 64 位整数。在标准头文件 <cstdint> 中定义,并且可用于确保在不同平台上具有相同大小的无符号 64 位整数。uint64_t 类型通常用于需要大范围整数值的情况,例如处理大量数据或需要确保数值不为负的情况。

3.两个字符串的删除操作

 代码随想录 (programmercarl.com)

代码: (正面思考。去模拟删除过程)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}// 递推for(int i = 1; i <= word1.size();i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1]; // 新加的两个元素本来就相同,不需要做任何操作}else{dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2));// 新加进来的元素不同,要不删掉其中一个,要不两个都删了}}}return dp[word1.size()][word2.size()];}
};

思路: 

        dp数组的含义:dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数

        dp数组的递推公式:新加的两个元素本来就相同,不需要做任何操作 dp[i][j] = dp[i - 1][j - 1];新加的两个两个元素不同,要不删掉其中一个,要不两个都删了。dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2))

        dp数组的初始化:按照定义初始化就好了。

        dp数组的遍历顺序:正序遍历

代码:(反面来思考。用最少的操作剩下的子序列,不就是最长公共子序列吗?只要做一下减法就好了)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j]表示dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}return word1.size() + word2.size() - 2 * dp[word1.size()][word2.size()];}
};

4.编辑距离

代码随想录 (programmercarl.com)

代码: 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小操作数// 这道题和上一道的区别就是替换用到操作数其实是会变少的。// 添加和删除元素的所用的操作数都是一样的。for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1];}else{dp[i][j] = min(dp[i][j - 1] + 1,min(dp[i - 1][j] + 1,dp[i - 1][j - 1] + 1));// 区别就在这里 dp[i - 1][j - 1] + 1就表示替换 上一题我们这里是加2,因为只能用删除}}}return dp[word1.size()][word2.size()];}
};

思路:

因为添加和删除,其实相对的操作次数是相同的。

这一道题和上一题唯一的区别就是 这里的替换表达式是dp[i - 1][j - 1] + 1 ;而上一题我们只能用删除,所以这里是dp[i - 1][j - 1] + 2。替换所用的操作数少了1.。

这篇关于代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058029

相关文章

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

Linux命令rm如何删除名字以“-”开头的文件

《Linux命令rm如何删除名字以“-”开头的文件》Linux中,命令的解析机制非常灵活,它会根据命令的开头字符来判断是否需要执行命令选项,对于文件操作命令(如rm、ls等),系统默认会将命令开头的某... 目录先搞懂:为啥“-”开头的文件删不掉?两种超简单的删除方法(小白也能学会)方法1:用“--”分隔命

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Python 常用数据类型详解之字符串、列表、字典操作方法

《Python常用数据类型详解之字符串、列表、字典操作方法》在Python中,字符串、列表和字典是最常用的数据类型,它们在数据处理、程序设计和算法实现中扮演着重要角色,接下来通过本文给大家介绍这三种... 目录一、字符串(String)(一)创建字符串(二)字符串操作1. 字符串连接2. 字符串重复3. 字

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc