深度学习500问——Chapter10:迁移学习(3)

2024-06-13 16:20

本文主要是介绍深度学习500问——Chapter10:迁移学习(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

11.3 迁移学习的常用方法

11.3.1 数据分布自适应

11.3.2 边缘分布自适应

11.3.3 条件分布自适应

11.3.4 联合分布自适应

11.3.5 概率分布自适应方法优劣性比较

11.3.6 特征选择

11.3.7 统计特征对齐方法


11.3 迁移学习的常用方法

11.3.1 数据分布自适应

数据分布自适应(Distribution Adaption)是一类最常用的迁移学习方法。这种方法的基本思想是,由于源域和目标域的数据概率分布不同,那么最直接的方式就是通过一些变换,将不同的数据分布的距离拉近。

图19 形象地表示了几种数据分布的情况,简单来说,数据的边缘分布不同,就是数据整体不相似。数据的条件分布不同,就是数据整体相似,但是具体到每个类里,都不太相似。

图19 不同数据分布的目标域数据

根据数据分布的性质,这类方法又可以分为边缘分布自适应、条件分布自适应以及联合分布自适应。下面我们分别介绍每类方法的基本原理和代表性研究工作。介绍每类研究工作时,我们首先给出基本思路,然后介绍该类方法的核心,最后结合最近的相关工作介绍该类方法的扩展。

11.3.2 边缘分布自适应

边缘分布自适应方法(Marginal Distribution Adaption)的目标是减小源域和目标域的边缘概率分布的距离,从而完成迁移学习。从形式上来说,边缘分布自适应方法是用P(Xs)和 P(Xt)之间的距离来近似两个领域之间的差异。即:

DISTANCE(Ds,Dt)\approx\lVert P(X_s)-P(X_t)\Vert

边缘分布自适应对应于图19中由图19(a) 迁移到 图19(b)的情形。

11.3.3 条件分布自适应

条件分布自适应方法(Condational Distribution Adaptation)的目标是减小源域和目标域的条件概率分布的距离,从而完成迁移学习。从形式上来说,条件分布自适应方法是用 P(ys|Xs) 和 P (yt|Xt)之间的距离来近似两个领域之间的差异。即:

DISTANCE(Ds,Dt)\approx\lVert P(y_s|X_s)-P(y_t|X_t)\Vert

条件分布自适应对应于图19中由19(a) 迁移到 图19(c)的情形。

目前单独利用条件分布自适应的工作较少,这种工作主要可以在[Saito et al.,2017]中找到。最近,中科院计算所的Wang等人提出了STL方法(Stratified Transfer Learning)[Wang et al.,2018]。作者提出了类内迁移(Intra-class Transfer)的思想,指出现有的绝大多数方法都只是学习一个全局的特征变换(Global DomainShift),而忽略了类内的相似性。类内迁移可以利用类内特征,实现更好的迁移效果。

STL方法的基本思路如图所示,首先利用大多数投票的思想,对无标定的位置行为生成伪标;然后在再生核希尔伯特空间中,利用类内相关性进行自适应地空间降维,使得不同情境中的行为数据之间的相关性增大;最后,通过二次标定,实现对未知标定数据的精准标定。

图21  STL 方法的示意图

11.3.4 联合分布自适应

​ 联合分布自适应方法 (Joint Distribution Adaptation) 的目标是减小源域和目标域的联合概率分布的距离,从而完成迁移学习。从形式上来说,联合分布自适应方法是用P(xs) 和P(xt)之间的距离、以及P(ys|xs)和P(yt|xt)之间的距离来近似两个领域之间的差异。即:

DISTANCE(Ds,Dt)\approx\lVert P(X_s)-P(X_t)\Vert-\lVert P(y_s|X_s)-P(y_t|X_t)\Vert

​ 联合分布自适应对应于图19中由图19(a)迁移到图19(b)的情形、以及图19(a)迁移到 图19(c)的情形。

11.3.5 概率分布自适应方法优劣性比较

综合上述三种概率分布自适应方法,我们可以得出如下的结论:

  1. 精度比较:BDA > JDA > TCA > 条件分布自适应。
  2. 将不同的概率分布自适应方法用于神经网络,是一个发展趋势。图23展示的结果表明将概率分布适配加入到深度网络中,往往会取得比非深度学习更好的结果。

图22 BDA方法的效果

图23 不同分布自适应方法的精度比较

11.3.6 特征选择

特征选择的基本假设是:源域和目标域中均含有一部分公共的特征,在这部分公共的特征,源域和目标域的数据分布是一致的。因此,此类方法的目标就是,通过机器学习方法,选择出这部分共享的特征,即可依据这些特征构建模型。

图24形象地表示了特征选择法的主要思路。

图24 特征选择法示意图

​ 这这个领域比较经典的一个方法是发表在 2006 年的 ECML-PKDD 会议上,作者提出了一个叫做 SCL 的方法 (Structural Correspondence Learning) [Blitzer et al.,2006]。这个方法的目标就是我们说的,找到两个领域公共的那些特征。作者将这些公共的特征叫做Pivot feature。找出来这些Pivot feature,就完成了迁移学习的任务。

图25 特征选择法中的 Pivot feature 示意图

​ 图 25形象地展示了 Pivot feature 的含义。 Pivot feature指的是在文本分类中,在不同领域中出现频次较高的那些词。总结起来:

  • 特征选择法从源域和目标域中选择提取共享的特征,建立统一模型
  • 通常与分布自适应方法进行结合
  • 通常采用稀疏表示 ||A||2,1 实现特征选择

11.3.7 统计特征对齐方法

​ 统计特征对齐方法主要将数据的统计特征进行变换对齐。对齐后的数据,可以利用传统机器学习方法构建分类器进行学习。SA方法(Subspace Alignment,子空间对齐)[Fernado et al.,2013]是其中的代表性成果。SA方法直接寻求一个线性变换M,将不同的数据实现变换对齐。SA方法的优化目标如下:

则变换 M 的值为:

可以直接获得上述优化问题的闭式解:

​ SA 方法实现简单,计算过程高效,是子空间学习的代表性方法。

这篇关于深度学习500问——Chapter10:迁移学习(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057812

相关文章

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷