清华大学与智谱AI重磅开源 GLM-4:掀起自然语言处理新革命

本文主要是介绍清华大学与智谱AI重磅开源 GLM-4:掀起自然语言处理新革命,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在强大的预训练基础上,GLM-4-9B 的中英文综合性能相比 ChatGLM3-6B 提升了 40%。尤其是中文对齐能力 AlignBench、指令遵从能力 IFeval,以及工程代码处理能力 Natural Code Bench 方面都实现了显著提升。

自 2023 年 3 月 14 日开源 ChatGLM-6B 以来,GLM 系列模型受到了广泛的关注和认可。特别是在 ChatGLM3-6B 开源之后,开发者对智谱 AI 推出的第四代模型充满了期待。而这一期待,随着 GLM-4-9B 的发布,终于得到了满足。

GLM-4-9B 的诞生

为了赋予小模型(10B 以下)更加强大的能力,GLM 技术团队经过近半年的探索,推出了这一全新的第四代 GLM 系列开源模型:GLM-4-9B。

创新预训练技术

在预训练过程中,我们引入大语言模型进行数据筛选,最终获得了 10T 高质量多语言数据。这一数据量是 ChatGLM3-6B 模型的 3 倍以上。此外,我们采用了 FP8 技术进行高效的预训练,相较于第三代模型,训练效率提高了 3.5 倍。考虑到用户的显存需求,GLM-4-9B 的参数规模从 6B 提升到了 9B。最终,我们将预训练计算量增加了 5 倍,从而在有限的显存条件下最大化性能。

卓越性能展示

综合以上的技术升级,GLM-4-9B 具备了更强大的推理性能、更加优异的上下文处理能力、多语言支持、多模态处理以及全工具 All Tools 调用等优势。

GLM-4-9B 系列包括多个版本:

  • 基础版本:GLM-4-9B(8K)
  • 对话版本:GLM-4-9B-Chat(128K)
  • 超长上下文版本:GLM-4-9B-Chat-1M(1M)
  • 多模态版本:GLM-4V-9B-Chat(8K)

GLM-4-9B 的强大能力

基础能力

在强大的预训练基础上,GLM-4-9B 的中英文综合性能相比 ChatGLM3-6B 提升了 40%。尤其是中文对齐能力 AlignBench、指令遵从能力 IFeval,以及工程代码处理能力 Natural Code Bench 方面都实现了显著提升。即使对比训练量更多的 Llama 3 8B 模型,GLM-4-9B 也丝毫不逊色,在英文表现上略有领先,而在中文学科领域,GLM-4-9B 更是提升了高达 50% [性能评测图表]。

长文本处理能力

图片

图片

GLM-4-9B 模型的上下文长度从 128K 扩展到了 1M tokens,意味着能同时处理多达 200 万字的输入,相当于两本《红楼梦》或 125 篇学术论文的长度。GLM-4-9B-Chat-1M 模型在“大海捞针”实验中,成功展示了其出色的无损处理长文本输入的能力 [长文本实验图示]。

以下是两个展示长文本处理能力的 demo 视频案例:

  1. GLM-4-9B-Chat 模型: 输入 5 个 PDF 文件,总长度约为 128K,给出写一篇关于中国大模型发展的详细调研报告的 prompt。模型能够快速生成高质量的调研报告(视频未加速)。
  2. GLM-4-9B-Chat-1M 模型: 输入《三体》全集约 90 万字,要求模型给该小说写续集大纲的 prompt。模型合理规划并给出续写框架(视频加速 10 倍)。

多语言支持

GLM-4-9B 支持多达 26 种语言,包括汉语、英语、俄语等。我们将 tokenizer 的词表大小从 65K 扩展到 150K,编码效率提高了 30%。在多语言理解和生成任务中,GLM-4-9B-Chat 显著超越 Llama-3-8B-Instruct [多语言性能比较图]。

Function Call 能力

GLM-4-9B 的函数调用能力相较上一代提升了 40%,在 Berkeley Function-Calling Leaderboard 上,其 Function Call 能力与 GPT-4 不相上下 [函数调用性能对比图表]。

All Tools 全工具调用

“All Tools”能力即模型可以理解和使用各种外部工具(如代码执行、联网浏览、画图等)来辅助完成任务。在 1 月 16 日的 Zhipu DevDay 上,GLM-4 模型全线升级了 All Tools 能力,可以智能调用网页浏览器、代码解释器、CogView 等工具,完成复杂请求 [All Tools 任务图示]。

多模态处理

GLM-4V-9B 作为 GLM-4 基座的开源多模态模型,能够处理高分辨率输入,将视觉和文本数据直接混合进行训练,展现了显著的多模态处理效果,与 GPT-4V 性能相当。在识别和处理复杂多模态任务时,表现非常出色 [多模态应用实例图]。

图片

图片

未来展望

GLM-4-9B 展现了其在多种任务中的强大性能,是自然语言处理领域的一大突破。无论是学术研究还是工业应用,GLM-4-9B 都将成为您的不二选择。

我们诚挚邀请您加入 GLM-4 的使用者行列,共同探索这款卓越模型带来的可能性:

  • GitHub 仓库
  • Hugging Face 模型页面
  • 魔搭社区  

这篇关于清华大学与智谱AI重磅开源 GLM-4:掀起自然语言处理新革命的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057684

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口