深度学习500问——Chapter11:迁移学习(1)

2024-06-13 10:36

本文主要是介绍深度学习500问——Chapter11:迁移学习(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

11.1 迁移学习基础知识

11.1.1 什么是迁移学习

11.1.2 为什么需要迁移学习

11.1.3 迁移学习的基本问题有哪些

11.1.4 迁移学习有哪些常用概念

11.1.5 迁移学习与传统机器学习有什么区别

11.1.6 迁移学习的核心及度量准则

11.1.7 迁移学习与其他概念的区别

11.1.8 什么是负迁移?产生负迁移的原因有哪些?

11.1.9 迁移学习的基本思路


11.1 迁移学习基础知识

11.1.1 什么是迁移学习

找到目标问题的相似性,迁移学习任务就是从相似性出发,将旧领域(domain)学习过的模型应用在新领域上。

11.1.2 为什么需要迁移学习

1. 大数据与少标注的矛盾:虽然有大量的数据,但往往都是没有标注的,无法训练机器学习模型。人工进行数据标定太耗时。

2. 大数据与弱计算的矛盾:普通人无法拥有庞大的数据量与计算资源。因此需要借助于模型的迁移。

3. 普适化模型与个性化需求的矛盾:即使是在同一个任务上,一个模型也往往难以满足每个人的个性化需求,比如特定的隐私设置。这就需要在不同人之间做模型的适配。

4. 特定应用(如冷启动)的需求。

11.1.3 迁移学习的基本问题有哪些

基本问题主要有3个:

  • How to transfer:如何进行迁移学习?(设计迁移方法)
  • What to transfer:给定一个目标领域,如何找到相对应的源领域,然后进行迁移?(源领域选择)
  • When to transfer:什么时候可以进行迁移,什么时候不可以?(避免负迁移)

11.1.4 迁移学习有哪些常用概念

基本定义:

  •         域(Domain):数据特征和特征分布组成,是学习的主体

                        源域(Source domain):已有知识的域

                        目标域(Target domain):要进行学习的域

  •         任务(Task):由目标函数和学习结果组成,是学习的结果。

按特征空间分类:

  •         同构迁移学习(Homogeneous TL):源域和目标域的特征空间相同,D_s=D_t
  •         异构迁移学习(Heterogeneous TL):源域和目标域的特征空间不同,D_s\ne D_t

按迁移情景分类:

  •         归纳式迁移学习(Inductive TL):源域和目标域的学习任务不同
  •         直推式迁移学习(Transductive TL):源域和目标域不同,学习任务相同
  •         无监督迁移学习(Unsupervised TL):源域和目标域均没有标签

按迁移方法分类:

  •         基于实例的迁移(Instance based TL):通过权重重用源域和目标域的样例进行迁移
  •         基于特征的迁移(Feature based TL):将源域和目标域的特征变换到相同空间
  •         基于模型的迁移(Parameter based TL):利用源域和目标域的参数共享模型
  •         基于关系的迁移(Relation based TL):利用源域中的逻辑网络关系进行迁移

11.1.5 迁移学习与传统机器学习有什么区别

迁移学习传统机器学习
数据分布训练和测试数据不需要分布训练和测试数据同分布
数据标签不需要足够的数据标注足够的数据标注
建模可以重用之前的模型每个任务分分别建模

11.1.6 迁移学习的核心及度量准则

迁移学习的总体思路可以概括为:开发算法来最大限度地利用有标注的领域的知识,来辅助目标领域的知识获取和学习。

迁移学习的核心是:找到源领域和目标领域之间的相似性,并加以合理利用。这种相似性非常普遍。比如,不同人的身体构造是相似的;自行车和摩托车的骑行方式是相似的;国际象棋和中国象棋是相似的;羽毛球和网球的打球方式是相似的。这种相似性也可以理解为不变量。以不变应万变,才能立于不败之地。

有了这种相似性后,下一步工作就是,如何度量和利用这种相似性。度量工作的目标有两点:一是很好地度量两个领域的相似性,不仅定性地告诉我们它们是否相似,更定量地给出相似程度。二是以度量为准则,通过我们所采用的学习手段,增大两个领域之间的相似性,从而完成迁移学习。

一句话总结:相似性是核心,度量准则是重要手段。

11.1.7 迁移学习与其他概念的区别

1. 迁移学习与多任务学习关系:

        多任务学习:多个相关任务一起协同学习;

        迁移学习:强调信息复用,从一个领域(domain)迁移到另一个领域。

2. 迁移学习与领域自适应:领域自适应:使两个特征分布不一致的domain一致。

3. 迁移学习与协方差漂移:协方差漂移:数据的条件概率分布发生变化。

11.1.8 什么是负迁移?产生负迁移的原因有哪些?

负迁移(Negative Transfer)指的是,在源阈上学习到的知识,对于目标域上的学习产生负面作用。

产生负迁移的原因主要有:

  • 数据问题:源域和目标域压根不相似,谈何迁移?
  • 方法问题:源域和目标域是相似的,但是,迁移学习方法不够好,没找到可迁移的成分。

负迁移给迁移学习的研究和应用带来了负面影响。在实际应用中,找到合理的相似性,并且选择或开发合理的迁移学习方法,能够避免负迁移现象。

11.1.9 迁移学习的基本思路

迁移学习的总体思路可以概括为:开发算法来最大限度地利用有标注的领域的知识,来辅助目标领域的知识获取和学习。

  1. 找到目标问题的相似性,迁移学习任务就是从相似性出发,将旧领域(domain)学习过的模型应用在新领域上。
  2. 迁移学习,是指利用数据、任务或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。
  3. 迁移学习最有用的场合是,如果你尝试优化任务B的性能,通常这个任务数据相对较少。例如,在放射科中你知道很难收集很多射线扫描图来搭建一个性能良好的放射科诊断系统,所以在这种情况下,你可能会找到一个相关但不同的任务上做的更好,尽管任务没有那么多数据。
  4. 迁移学习什么时候是有意义的?它确实可以显著提高你的学习任务的性能,但我有时候也见过有些场合使用迁移学习时,任务实际上数据量比任务要少,这种情况下增益可能不多。

什么情况下可以使用迁移学习?

假如两个领域之间的区别特别的大,不可以直接采用迁移学习,因为在这种情况下效果不是很好。在这种情况下,推荐使用[3]的工作,在两个自相似度很低的domain之间一步步迁移过去(踩着石头过河)。

  1. 迁移学习主要解决方案有哪些?
  2. 除直接看infer的结果的Accurancy以外,如何衡量迁移学习学习效果?
  3. 对抗网络是如何进行迁移的?

Reference:

  1. 王晋东,迁移学习简明手册
  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. Machine learning, 79(1-2), 151-175.
  3. Tan, B., Song, Y., Zhong, E. and Yang, Q., 2015, August. Transitive transfer learning. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1155-1164). ACM.

这篇关于深度学习500问——Chapter11:迁移学习(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057060

相关文章

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR