基于遗传算法二维下料问题/矩形件排样/matlab程序

2024-06-13 09:58

本文主要是介绍基于遗传算法二维下料问题/矩形件排样/matlab程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于遗传算法的二维板材切割下料优化问题/matlab程序

关键词: 遗传算法, 二维板材切割, matlab

引言

二维板材切割问题在实际的工程中有很多的应用,该问题基本等同于矩形件优化排样,具体是指将若干尺寸不相同的矩形零件在给定的矩形板材上以最优的方式排布,要求所有待排零件都必须排放在板材内,且各个零件之间不发生重叠,并满足一定的工艺要求.排样问题普遍存在于工程领域中,如钣金下料、玻璃切割、造船、车辆、家具生产、报刊排版、服装和皮革裁剪等.最优的排样方案可以最大限度地节约材料、提高材料利用率,在经济上制造可观的效益.排样问题属于典型的组合优化问题,从理论上讲,该类问题属于具有最高计算复杂性的优化计算问题,即 NP完全问题.对于 NP完全问题,以目前计算理论和方法,在可行的时间界限内不可能找到问题的最优解,只能求其局部最优的近似解.
遗传算法是一种全局随机搜索算法,它借鉴了生物界的自然选择思想和自然遗传机制,将问题的可行解构成种群,把每一个可能的解看作种群的个体,算法运行时在整个解空间里随机搜索,并按一定的评估策略(或适应度函数)对每一个个体做出评价,然后不断地使用选择、交叉、变异3个遗传算子来进化问题的解,直至产生最优解.其优点是:强调概率转移规则,具有快速随机的全局搜索能力,鲁棒性强.缺点是:对于系统中的反馈信息利用不够,当求解到一定范围时往往做大量的冗余迭代,求解效率低。
本文采用遗传算法对二维板材切割/矩形件优化排样问题进行优化求解

遗传算法实现

遗传算法设计如下:

  1. 编码:采用十进制整数编码方式.
  2. 适应度函数:将适应度函数定义为f® = Area / Area1,
    其中,Area是待排入矩形零件的面积总和,Area1是所得排样图高度轮廓线以下的矩形板材面积.
  3. 初始种群:使用随机函数来生成一定数量的十进制整数序列组成父辈群体,设定种群规模 M=50.
  4. 交叉算子:采用单点交叉和双点交叉
    .设置交叉概率pc=1,单点交叉与双点交叉各占一半.
  5. 变异算子:采用位置变异和旋转变异
    .设置位置变异概率pm1=0.1和旋转变异概率pm2=0.1.
  6. 选择算子:根据适应度函数值从大到小排列执行完交叉、变异操作的个体,选择前 M 个个体组成下
    一代父辈群体.
  7. 结 束 条 件:设置迭代多少代.设置maxgen = 200.

流程图

整个算法的流程图,基本如下图所示:
在这里插入图片描述

算例

在一块高10m,宽度没有没有限制的板材上,切割出一定数量的以下两种规格的零件,并使所消耗的板材的宽度最小,或容积利用率最大。

  1. 零件1:高度1m,宽度2m,个数10
  2. 零件2:高度1.5m,宽度2.5m,个数30

Matlab程序

%     Author:    怡宝2号			博士猿工作室
%     淘宝链接:  https://shop437222340.taobao.com/index.htm?spm=2013.1.w5002-16262391244.6.733e1fb4LF2f58%     Use:       用遗传求解二维板材物料切割问题
%                物料参数视自己的具体情况而定。
%     Illustrate:输入变量(must):
%                                initial:零件的相关信息
%                                parameter:板材参数
%
%       Can—changed parameter: 
%                                Option:遗传算法的相关参数
%                                Option.NIND:蚁群的规模
%                                Option.MAXGEN:蚁群的最大迭代代数
%                               
%                  输出:        bestpop:最短路程对应的路径
%                                trace :最短路程
%         remark:如有疑问请咨询qq:778961303clc
clear all
close allformat compact%遗传算法参数:NIND/种群规模;MAXGEN/最大迭代代数;PC/交叉概率;PM/变异概率;GGAP/遗传代沟
Option = struct('NIND',60, 'MAXGEN', 200, 'PC', 0.85, 'PM', 0.1, 'GGAP', 0.8);
Option.w1 = 1; Option.w2 = 0;            %多目标时每个目标函数的比重//没有用到%导入数据
[initial, parameter] = initialFunc();%初始化种群
chrom = initialpop( Option.NIND, initial);%  画出各客户的初始坐标
figure();
Initial_Draw_( chrom(1:2,:), parameter, initial );%结果记录的结构体
Result = struct('mintrace',zeros( Option.MAXGEN,1),'bestpop',[]);
trace =Result;%迭代开始
gen = 1;
while gen<=Option.MAXGEN%计算目标函数[cost, fitness] = CalculateFitness_( chrom, initial, parameter, Option);%选择[selch] = Select(chrom,fitness, Option.GGAP);%随机交叉[selch] = CrossOver(selch, Option.PC);%交换变异selch = ExchangeMutation_(selch, Option.PM);%计算子代的目标函数和适应度[selcost, selfitness] = CalculateFitness_( selch, initial, parameter, Option);%重插入[chrom,cost]=reins_(chrom,selch,1,1,cost,selcost);   %也就是ObjVSel中个体目标函数越小则月容易被选择,按fitval和selfitval来进行选择%结果记录[mincost,index] = min(cost);trace.mintrace(gen) = min(cost);trace.bestpop(gen*2-1:gen*2,:) = chrom(index(1)*2-1:index(1)*2,:);disp(['共迭代',num2str( Option.MAXGEN ),'次,现在为:',num2str(gen)]);gen = gen + 1;
end%绘制寻优迭代图
figure()
plot(trace.mintrace,'--m',...'LineWidth',2);
grid off
xlabel('迭代次数')
ylabel('Cost')
title('遗传寻优','fontsize',16)%显示信息
FuncDisplay(trace);%画出最优下料图
[minvalue minindex] = min(trace.mintrace);
minchrom = trace.bestpop(minindex*2-1:minindex*2,:);
figure();
Final_Draw_( minchrom, parameter, initial );

结果

由结果可以看到,整个优化过程提高了12.785%的容积利用率。结果图如下所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Reference

  1. 融合蚁群算法和遗传算法的矩形件排样问题研究
  2. 矩形件排样问题的遗传算法求解
  3. 遗传算法求解立体仓库货位优化
  4. 基于遗传算法的二维板材切割下料优化问题/矩形件排样/matlab程序

这篇关于基于遗传算法二维下料问题/矩形件排样/matlab程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056974

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原